Что означает термин обратная вакцинология
Обратная вакцинология
Новая вакцина активирует производство антител к ВИЧ
Исследователи из Школы медицины Маунт-Синай разработали новую вакцину, состоящую из ДНК и рекомбинантных белков, которая помогает бороться с ВИЧ.
Для разработки вакцины исследователи сначала определили часть вируса, которая может взаимодействовать с антителами. Такое взаимодействие индуцирует каскад реакций, приводящих в конечном итоге к смерти вируса и зараженных им клеток. Затем ученые разработали вакцину, которая активировала работу антител этого типа. Такой подход к разработке вакцин называется «обратной вакцинологией».
Действующее вещество вакцины взаимодействует с одной из частей белка gp120, который содержится в оболочке ВИЧ. Новая формула содержит ДНК протеина gp120 и три рекомбинантных белка. Они вызывают изменения в иммунной системе, заставляя ее производить антитела против gp120. Поэтому при последующем заражении организма вирусом иммунитет использует новые антитела для его устранения путем разрушения оболочки.
Новая вакцина безопасна тем, что не содержит опасных веществ и вируса в активной форме, то есть не позволяет заразиться ВИЧ. В опубликованном исследовании ученые показывали, что эта прививка индуцирует нужные антитела у обезьян. Это значит, что подобные защитные антитела могут быть индуцированы и у людей и могут играть важную роль в предотвращении ВИЧ-инфекции.
Важно показать, что вакцина индуцирует антитела у обезьян, так как организм людей, скорее всего, будет реагировать аналогично. Эти эксперименты на приматах позволяют вакцине перейти к новому этапу — испытаниям на людях. По сообщениям ученых, новая формула безопасна, хорошо переносится и вызывает иммунный ответ.
Читать статьи по темам:
Читать также:
Сибирская вакцина против ВИЧ
Доклад на конференции OpenBio «Изучение антигенных свойств иммуногенов, несущих эпитопы, узнавамые широконейтрализующими ВИЧ-1 антителами».
Вакцина от ВИЧ: ждём-с…
Эксперт Объединенной программы ООН по СПИДу, профессор Эдуард Карамов: вакцина от ВИЧ появится через 10 лет.
Рекордсмен среди вакцин
Новая экспериментальная вакцина защитила макак от трети штаммов вируса иммунодефицита человека.
С максимальной эффективностью
Российские ученые оптимизировали прототип ДНК-вакцины против формы ВИЧ, устойчивой к действию антиретровирусных препаратов.
Антитела против иммунодефицита
Всего одна инъекция модифицированных антител защищает макак от вируса иммунодефицита обезьян в среднем на 20 недель
Электронное СМИ зарегистрировано 12.03.2009
Свидетельство о регистрации Эл № ФС 77-35618
СОДЕРЖАНИЕ
Вычислительный подход
История
После того, как Крейг Вентер опубликовал геном первого свободноживущего организма в 1995 году, геномы других микроорганизмов стали более доступными в конце двадцатого века. Обратная вакцинология, разработка вакцин с использованием секвенированного генома патогена, возникла на основе этого нового богатства геномной информации, а также технологических достижений. Обратная вакцинология намного эффективнее традиционной вакцинологии, которая требует выращивания большого количества определенных микроорганизмов, а также обширных влажных лабораторных тестов.
В 2000 году Рино Раппуоли и Институт Дж. Крейга Вентера разработали первую вакцину с использованием обратной вакцинологии против менингококка серогруппы B. Институт Дж. Крейга Вентера и другие затем продолжили работу над вакцинами против Streptococcus A, Streptococcus B, Staphylococcus aureus и Streptococcus pneumoniae.
Обратная вакцинология с менингококком B
Попытки обратной вакцинологии впервые начались с Meningococcus B (MenB). Менингококк B вызывает более 50% случаев менингококкового менингита, и ученые не смогли создать успешную вакцину против этого патогена из-за уникальной структуры бактерии. Полисахаридная оболочка этой бактерии идентична таковой у аутоантигена человека, но ее поверхностные белки сильно различаются; а из-за отсутствия информации о поверхностных белках разработка вакцины была чрезвычайно сложной. В результате Рино Раппуоли и другие ученые обратились к биоинформатике для разработки функциональной вакцины.
Последующее обратное вакцинологическое исследование
Во время разработки вакцины MenB ученые использовали те же методы обратной вакцинологии для других бактериальных патогенов. Streptococcus и В Streptococcus вакцина была два из первых обратных вакцин создана. Поскольку эти бактериальные штаммы индуцируют антитела, которые реагируют с человеческими антигенами, вакцины для этих бактерий не должны содержать гомологий с белками, закодированными в геноме человека, чтобы не вызывать побочные реакции, что указывает на необходимость в геномной обратной вакцинологии.
Позже обратная вакцинология была использована для разработки вакцин против устойчивых к антибиотикам Staphylococcus aureus и Streptococcus pneumoniae.
Плюсы и минусы
Доступное программное обеспечение
Хотя Vaxign оказался чрезвычайно точным и эффективным, некоторые ученые все еще используют онлайн-программное обеспечение RANKPEP для прогнозов пептидных связей. И Vaxign, и RANKPEP используют PSSM (оценочные матрицы, специфичные для позиции) при анализе последовательностей белков или выравниваний последовательностей.
Проекты в области компьютерной биоинформатики становятся чрезвычайно популярными, поскольку они помогают направлять лабораторные эксперименты.
Обратная вакцинология
СОДЕРЖАНИЕ
Вычислительный подход [ править ]
История [ править ]
После того, как Крейг Вентер опубликовал геном первого свободноживущего организма в 1995 году, геномы других микроорганизмов стали более доступными в конце двадцатого века. Обратная вакцинология, разработка вакцин с использованием секвенированного генома патогена, возникла на основе этого нового богатства геномной информации, а также технологических достижений. Обратная вакцинология намного более эффективна, чем традиционная вакцинология, которая требует выращивания большого количества определенных микроорганизмов, а также обширных влажных лабораторных тестов. [ необходима цитата ]
В 2000 году Рино Раппуоли и Институт Дж. Крейга Вентера разработали первую вакцину с использованием обратной вакцинологии против менингококка серогруппы B. Институт Дж. Крейга Вентера и другие затем продолжили работу над вакцинами против Streptococcus A, Streptococcus B, Staphylococcus aureus и Streptococcus pneumoniae. [5]
Обратная вакцинология с Meningococcus B [ править ]
Попытки обратной вакцинологии впервые начались с Meningococcus B (MenB). Менингококк B вызывает более 50% случаев менингококкового менингита, и ученые не смогли создать успешную вакцину против этого патогена из-за уникальной структуры бактерии. Полисахаридная оболочка этой бактерии идентична оболочке аутоантигена человека, но ее поверхностные белки сильно различаются; а из-за отсутствия информации о поверхностных белках разработка вакцины была чрезвычайно сложной. В результате Рино Раппуоли и другие ученые обратились к биоинформатике, чтобы разработать функциональную вакцину. [5]
Последующее обратное вакцинологическое исследование [ править ]
Во время разработки вакцины MenB ученые использовали те же методы обратной вакцинологии для других бактериальных патогенов. Streptococcus и В Streptococcus вакцина была два из первых обратных вакцин создана. Поскольку эти бактериальные штаммы индуцируют антитела, которые вступают в реакцию с человеческими антигенами, вакцины для этих бактерий должны не содержать гомологий с белками, закодированными в геноме человека, чтобы не вызывать побочные реакции, что создает необходимость в геномной обратной вакцинологии. [5]
Позднее обратная вакцинология была использована для разработки вакцин против устойчивых к антибиотикам Staphylococcus aureus и Streptococcus pneumoniae [5]
Плюсы и минусы [ править ]
Доступное программное обеспечение [ править ]
Хотя Vaxign оказался чрезвычайно точным и эффективным, некоторые ученые все еще используют онлайн-программу RANKPEP для прогнозов пептидных связей. И Vaxign, и RANKPEP используют PSSM (оценочные матрицы, специфичные для позиции) при анализе последовательностей белков или выравниваний последовательностей. [8]
Проекты в области компьютерной биоинформатики становятся чрезвычайно популярными, поскольку они помогают направлять лабораторные эксперименты. [9]
Новые технологии производства вакцин: генетическая иммунизация и «обратная вакцинология»
Создавать вакцины против новых инфекций, используя старые испытанные технологии, удается не всегда. Некоторые микроорганизмы, например, вирус гепатита B, практически невозможно вырастить в культуре клеток, чтобы получить инактивированную вакцину. Во многих случаях вакцины на основе убитых микробов оказываются неэффективными, а живые вакцины — слишком опасными. Большие надежды возлагались на вакцины, полученные на основе рекомбинантных белков-антигенов (именно таким способом в 1980-е годы создали вакцину, защищающую от гепатита B). Но сейчас стало очевидным, что многие рекомбинантные вакцины вызывают слабый иммунный ответ. Вероятно, причина в том, что в таких препаратах содержится «голый» белок и отсутствуют другие молекулярные структуры, часто необходимые для запуска иммунного ответа. Чтобы рекомбинантные вакцины вошли в практику, нужны вещества-усилители (адъюванты), стимулирующие антигенную активность.
За последние 10 лет сформировалось новое направление — генетическая иммунизация. Его называют также ДНК-вакцинацией, поскольку в организм вводят не белок-антиген, а нуклеиновую кислоту (ДНК или РНК), в которой закодирована информация о белке. Реальная возможность использовать эту технологию в медицине и ветеринарии появилась в середине 90-х годов прошлого века. Новый подход достаточно прост, дешев и, самое главное, универсален. Сейчас уже разработаны относительно безопасные системы, которые обеспечивают эффективную доставку нуклеиновых кислот в ткани. Нужный ген вставляют в плазмиду (кольцо из ДНК) или в безопасный вирус. Такой носитель-вектор проникает в клетку и синтезирует нужные белки. Трансформированная клетка превращается в «фабрику» по производству вакцины прямо внутри организма. Вакцинная «фабрика» способна работать длительный период — до года. ДНК-вакцинация приводит к полноценному иммунному ответу и обеспечивает высокий уровень защиты от вирусной инфекции.
ДНК-вакцинация заключается в том, чтобы ввести фрагмент ДНК, кодирующий защитные антигены и цитокины, непосредственно в мышечную ткань. «Заразность» большинства вирусов во многом определяется их структурными белками. Плазмида (кольцевая молекула ДНК) с генами таких белков, введенная в мышцу, стимулирует иммунный ответ, который препятствует развитию заболевания.
Используя один и тот же плазмидный или вирусный вектор, можно создавать вакцины против различных инфекционных заболеваний, меняя только последовательность, кодирующую необходимые белки-антигены. При этом отпадает необходимость работать с опасными вирусами и бактериями, становится ненужной сложная и дорогостоящая процедура очистки белков. Препараты ДНК-вакцин не требуют специальных условий хранения и доставки, они стабильны длительное время при комнатной температуре.
Уже разработаны и испытываются ДНК-вакцины против инфекций, вызываемых вирусами гепатитов B и C, гриппа, лимфоцитарного хориоменингита, бешенства, иммунодефицита человека (ВИЧ), японского энцефалита, а также возбудителями сальмонеллеза, туберкулеза и некоторых паразитарных заболеваний (лейшманиоз, малярия). Эти инфекции крайне опасны для человечества, а попытки создать против них надежные вакцинные препараты классическими методами оказались безуспешными.
ДНК-вакцинация — одно из самых перспективных направлений в борьбе с раком. В опухоль можно вводить разные гены: те, что кодируют раковые антигены, гены цитокинов и иммуномодуляторов.
Вакцины «по расчету»: «обратная вакцинология»
Бурное развитие в последнее десятилетие геномики, биоинформатики и протеомики привело к совершенно новому подходу в создании вакцин, получившему название «обратная вакцинология» (reverse vaccinology). Этот термин четко выражает суть нового технологического приема. Если раньше при создании вакцин ученые шли по нисходящей линии, от целого микроорганизма к его составляющим, то теперь предлагается противоположный путь: от генома – к его продуктам. Такой подход основан на том, что большинство защитных антигенов — белковые молекулы. Обладая полными знаниями обо всех белковых компонентах любого возбудителя заболевания, можно определить, какие из них годятся в качестве потенциальных кандидатов на включение в состав вакцинного препарата, а какие — нет.
Чтобы определить нуклеотидную последовательность полного генома инфекционного микроорганизма, достаточно если не нескольких дней, то нескольких недель. Причем предварительная работа по получению «библиотек» клонов ДНК возбудителя уже давно выполняется с помощью стандартных наборов ферментов. Современные приборы для автоматического определения нуклеотидной последовательности в молекулах ДНК позволяют проводить в год до 14 млн реакций. Полная расшифровка генома и его описание со списком кодируемых белков занимают несколько месяцев.
Рекомбинантные технологии позволяют получить ослабленный вирус за более короткое время. Для этого из генома вируса «вырезают» ген, который отвечает за вирулентность (болезнетворные свойства), но не влияет на размножение и иммуногенность. Получившийся безобидный вирусный штамм используют для изготовления вакцины.
Проведя компьютерный (in silico) анализ генома, исследователь получает не только список кодируемых белков, но и некоторые их характеристики, например, принадлежность к определенным группам, возможная локализация внутри бактериальной клетки, связь с мембраной, антигенные свойства.
Другой подход к отбору кандидатов в вакцины — определение активности отдельных генов микроорганизмов. Для этого одновременно измеряют уровень синтеза матричной РНК всех продуктов генов, производимых в клетке. Такая технология позволяет «вычислить» гены, вовлеченные в процесс распространения инфекции.
Третий подход основан на протеомной технологии. Ее методы дают возможность детализировать количественную и качественную характеристики белков в компонентах клетки. Существуют компьютерные программы, которые по аминокислотной последовательности могут предсказать не только трехмерную структуру изучаемого белка, но и его свойства и функции.
Используя эти три метода, можно отобрать набор белков и соответствующие им гены, которые представляют интерес для создания вакцины. Как правило, в эту группу входит около 20-30% всех генов бактериального генома. Для дальнейшей проверки нужно синтезировать и очистить отобранный антиген в количествах, необходимых для иммунизации животных. Очистку белка проводят с помощью полностью автоматизированных приборов. Используя современные технологии, лаборатория, состоящая из трех исследователей, может в течение месяца выделить и очистить более 100 белков.
Впервые принцип «обратной вакцинологии» использовали для получения вакцины против менингококков группы B. За последние годы таким способом разработаны вакцинные препараты против стрептококков Streptococcus agalactiae и S. pneumoniae, золотистого стафилококка, бактерии Porphyromonas gingivalis, вызывающей воспаление десен, провоцирующего астму микроорганизма Chlamydia pneumoniae и возбудителя тяжелой формы малярии Plasmodium falciparum.
Важно не только создать вакцину, но и найти наилучший способ ее доставки в организм. Сейчас появились так называемые мукозальные вакцины, которые вводятся через слизистые оболочки рта или носа либо через кожу. Преимущество таких препаратов в том, что вакцина поступает через входные ворота инфекции и тем самым стимулирует местный иммунитет в тех органах, которые первыми подвергаются атаке микроорганизмов.
Терапевтические вакцины
Обычные вакцины предназначены для предупреждения болезни: прививку делают здоровому человеку, чтобы заранее «вооружить» организм средствами борьбы с инфекцией (исключение — разработанная Пастером вакцина против бешенства, которую применяют после укуса бешеным животным; ее эффективность объясняется длительным инкубационным периодом этого вирусного заболевания). Но в последнее время отношение к вакцинам исключительно как к профилактическому средству изменилось. Появились терапевтические вакцины — препараты, которые индуцируют иммунный ответ у больных и тем самым способствуют выздоровлению или улучшению состояния. Такие вакцины нацелены на хронические заболевания, вызванные бактериями или вирусами (в частности, вирусами гепатитов B и C, вирусом папилломы, ВИЧ), опухоли (прежде всего, меланому, рак молочной железы или прямой кишки), аллергические или аутоиммунные болезни (рассеянный склероз, диабет I типа, ревматоидный артрит).
Существующие терапевтические вакцины для лечения хронических воспалительных заболеваний, вызванных бактериями или вирусами, получают классическими методами. Такие вакцины способствуют развитию иммунитета к входящим в их состав микроорганизмам и активизируют врожденный иммунитет.
Один из традиционных методов ослабления вирусов — выращивание в животных клетках. Сначала болезнетворный вирус выделяют из культуры человеческих клеток. Выращивание вне человеческого организма само по себе ослабляет «заразность» вируса. Для некоторых заболеваний, например, краснухи, такой подготовки бывает достаточно, чтобы получить вакцинный штамм. Однако в общем случае для того, чтобы получить ослабленный штамм, вирус пересаживают в среду, приготовленную из клеток животных. Благодаря мутациям вирус приспособится к новой среде обитания. Для создания вакцины ученые отбирают те разновидности вирусов-мутантов, которые плохо растут на человеческих клетках, а значит, не могут вызвать болезнь.
Одна из важнейших целей разработчиков терапевтических вакцин — ВИЧ-инфекция. Уже проведена серия доклинических и клинических испытаний нескольких препаратов. Их способность вызывать развитие клеточного иммунитета у здоровых людей не вызывает сомнений. Однако убедительных данных о том, что вакцины подавляют размножение вируса у больных, пока нет.
Большие надежды в лечении нарушений иммунитета при раковых заболеваниях связаны с дендритными вакцинами. Их делают на основе дендритных клеток — особой разновидности лейкоцитов, которые занимаются поиском потенциально опасных микроорганизмов. Дендритные клетки «патрулируют», прежде всего, слизистые оболочки и кожу, то есть органы, контактирующие с внешней средой. Встретив патогенную бактерию или вирус, дендритные клетки поглощают «чужака» и используют его белки-антигены для того, чтобы активизировать иммунную систему на борьбу с врагом.
Схема изготовления дендритной вакцины такова: из крови больного выделяют клетки, которые дают начало дендритным клеткам, и размножают их в лабораторных условиях. Одновременно из опухоли пациента выделяют белки-антигены. Дендритные клетки некоторое время выдерживают вместе с опухолевыми антигенами, чтобы они запомнили образ врага, а затем вводят больному. Такая стимуляция иммунной системы заставляет организм активно бороться с опухолью.
Дендритные вакцины можно использовать для лечения как спонтанных опухолей, так и новообразований, ассоциированных с вирусами. Первые результаты испытания дендритных противораковых вакцин на людях (в небольших группах пациентов IV стадии заболевания) показали безвредность таких вакцин, а в ряде случаев зарегистрирован положительный клинический эффект.
У мышей дендритные вакцины помогают предупредить повторное развитие карциномы после удаления опухоли. Это позволяет надеяться, что они будут эффективны для продления безрецидивного периода онкологических больных после хирургического вмешательства.
В XX веке успехи вакцинологии определялись, прежде всего, победами над очередной опасной инфекцией. С развитием наших представлений о работе иммунной системы сфера применения вакцин постоянно расширяется. Есть надежда, что в XXI веке вакцины помогут снизить заболеваемость диабетом, миокардитом, атеросклерозом и другими «неинфекционными» болезнями. Полным ходом идет разработка препаратов для иммунопрофилактики и иммунотерапии онкологических заболеваний.
«Спутник V», «ЭпиВакКорону», «Модерну» делать будем? Ликбез по вакцинам против коронавируса
Один из популярных мемов, посвященный вакцинам против COVID-19
мем адаптирован автором статьи
Автор
Редакторы
Прошло чуть больше года с того момента, когда ВОЗ объявила пандемию, а мы уже прививаемся против ее «виновника» — коронавируса SARS-CoV-2. Удивительно, как всё совпало: он появился именно тогда, когда технологии позволяют расшифровать и опубликовать геном за считанные дни, когда у компаний Moderna и BioNTech уже были наработанные технологии производства мРНК-вакцин, а у НИЦ им. Н.Ф. Гамалеи — платформа для создания вакцин на основе аденовирусных векторов. Страшно подумать, как бы всё обернулось, случись это лет 15–20 назад. Интересно, было бы столько же скепсиса в отношении новых вакцин или все, не задумываясь, ринулись бы на прививку?
По статистике сайта gogov.ru, к 22 марта 2021 хотя бы одной дозой привито 6 054 542 человек.
Россия входит в число стран-счастливчиков, которым не надо выпрашивать вакцины у соседей. Наоборот, многие хотели бы прививаться нашими! В первую очередь речь идет, конечно, о векторной вакцине «Гам-КОВИД-Вак», более известной как «Спутник V». Она входит в тройку самых востребованных вакцин после Pfizer и AstraZeneсa: к середине февраля 2021-го ее одобрили в 26 странах мира; 4 марта начата экспертиза Европейским агентством по лекарственным препаратам (EMA), которая необходима для регистрации вакцины в ЕС. Главный инфекционист США Энтони Фаучи, отвечая на вопрос, привился бы он «Спутником» или китайской вакциной, прокомментировал: «Данные, которые я знаю о “Спутнике”, достаточно хорошие. У меня недостаточно информации о китайской вакцине (. ) но российские данные выглядят неплохо». В общем, желающих защититься от COVID-19 много, но «есть небольшой нюанс». Ответим на самые распространенные вопросы.
Смутные сомнения
Не опасно ли прививаться этими вакцинами — ведь их используют меньше года?
С коронавирусом мы «знакомы» чуть больше года, но до сих пор нет эффективной схемы лечения, в том числе той, которую можно было бы применять при первых симптомах болезни. К тому же, вопреки ожиданиям, за это время вирус не выродился в менее опасный: он медленно мутирует и, судя по всему, мутации не уменьшают его патогенности — только увеличивают заразность. На сегодняшний день COVID-19 остается опасным (5% заболевших будут находиться в тяжелом или критическом состоянии; около 2% умрут [3]), плохо изученным заболеванием с неприятными долгосрочными последствиями для переболевших:
Это то, о чем уже известно, однако есть предпосылки и к более серьезным явлениям:
Так как один из частых симптомов COVID-19 — потеря обоняния, такой сценарий возможен: обонятельная луковица соединяется с гиппокампом, который участвует в переводе информации из кратковременной в долговременную память.
Теперь посмотрим, чем нам предлагают привиться :
О видах вакцин против коронавируса вы можете прочитать в моей в статье «Гонка во спасение: безопасны ли вакцины против коронавируса?» [7] и посмотреть в инфографике «Гонки вакцин 2020» [8] на «Биомолекуле».
Для этих вакцин (за исключением двух последних ) уже опубликованы результаты всех фаз клинических исследований (по третьей фазе пока только предварительные, так как наблюдения за добровольцами продолжаются), а также первые пострегистрационные исследования. То есть мы уже знаем о них достаточно, чтобы судить об их безопасности и эффективности.
«ЭпиВакКорона» и «КовиВак» в данный момент проходят третью фазу клинических испытаний.
Конечно, у них есть побочные эффекты, но по сравнению с COVID-19 они скромно тушуются в уголке. Например, в III фазе клинического исследования наиболее актуального для нас «Спутника V» (аналогичные данные есть и по вакцинам AstraZeneсa [9], Pfizer [10] и Moderna [11]) были отмечены следующие нежелательные реакции:
Смертей или серьезных реакций, ассоциированных с вакциной, не было [2].
Благодаря большому количеству коммерческих лабораторий, в которых можно проверить титр антител, вокруг отечественных вакцин сложилась беспрецедентная ситуация: кроме данных производителя (мы ведь помним про конфликт интересов?), появились «народные исследования» в чатах Telegram. И хотя это не строго научные данные, учитывая текущую ситуацию, они представляют большую ценность. В соответствии с информацией «Телеграм»-канала «Народные отчеты о вакцинации от Covid-19 :: Проект V1V2», наиболее типичными реакциями у привитых являются:
Рисунок 1. Отзывы привитых «Спутником V». Данные по реакциям на обе дозы вакцины в соответствии с отчетами привитых в ходе гражданской вакцинации за период 05.12.2020–09.01.2021.
И хотя провокаторы упорно пишут, что после прививок «много смертей», это обыкновенное запугивание — ну как сейчас со всеми нашими СМИ, «народными исследованиями» и соцсетями можно скрыть массовый мор после прививок? Конечно, хотелось бы вакцину вообще без побочных явлений, но она вряд ли будет работать.
В итоге получается, что выбор стоит между риском попасть в 0,38% известных сейчас серьезных проблем со здоровьем после вакцинации и 10–15% риском оказаться в больнице с COVID-19 или даже пополнить те 2%, которым не повезет умереть от этой болезни.
НИЦ им. Гамалеи классифицирует нежелательные реакции в поствакцинальном периоде в соответствии со списком MedDRA (SAE list). В нем есть такие события, как тромбоз глубоких вен (1 случай) [2], аппендицит (1 случай), мерцательная аритмия (3 случая), панкреатит (1 случай) и т.п.
Обновление от 04.07.2021: в мире привито более 3,3 млрд разных противоковидных вакцин. Разговоры об их мнимой опасности устарели миллионы доз назад!
Никто не хочет делать эти прививки!
Прям так и никто? Если смотреть в глобальном масштабе, то миллионы жителей Земли мечтают оказаться на нашем месте — далеко не во всех странах есть даже тысячи доз хоть какой-нибудь вакцины. А там, где вакцины доступны, прививаются миллионы: про США, Россию и Израиль я писала выше — теперь посмотрим статистику по ЕС: на середину марта 2021 года там введено 51 млн доз разных противоковидных вакцин.
Однако в нашей стране к прививкам (не только против коронавируса) относятся, мягко говоря, настороженно. Есть и те, кто ни при каких обстоятельствах их не сделает. Тем не менее я думаю, что и в России привьется довольно много: сомневающимся присуще ориентироваться на свое окружение и опыт близких, поэтому когда люди увидят, что привитые друзья и родственники не только живы-здоровы, но и неплохо себя чувствуют, они могут изменить свое отношение к этим прививкам. Смущает одно — количество времени, которое на это уйдет: если массовая вакцинация пойдет медленно, SARS-CoV-2 будет циркулировать в нашей стране довольно долго. Не хотелось бы из-за необоснованных страхов «проигрывать» вирусу.
Чем могут быть чреваты скептицизм и отрицание
Запугивать друг друга и всего бояться стало плохой приметой нашего времени. Нюанс в том, что сейчас речь идет не о чем-то абстрактном, а о живых людях, которые могут не пережить такой, казалось бы, банальной вещи, как вирусная инфекция. Трудно поверить, что от нее умирают молодые и здоровые — всегда кажется, что погибнет кто-то другой: дряхлая старушка из глухой деревни или столетний дед. В действительности всё иначе, но те, кто не переплыл эту реку, уже не смогут сказать, что ошибались, и эта ошибка стала роковой.
Скорее всего, вы помните Николая Николаевича Филатова — профессора, доктора медицинских наук, члена-корреспондента РАН, замдиректора по науке НИИ вакцин и сывороток им. Мечникова и бывшего главного санитарного врача Москвы. В прошлом году его интервью были довольно популярны. Он жестко критиковал ограничения и утверждал, что «Это обычная респираторная инфекция», «. летальность 3,4%, ну максимум 4%! О чем это говорит? Да ни о чем». Но так уж получилось, что именно эта «обычная» инфекция стала для него фатальной: в начале февраля 2021 года Николай Николаевич умер от COVID-19. Ему было 66 лет.
Изучались ли эти вакцины на людях с хроническими заболеваниями?
О фазах клинических исследований читайте в цикле «Биомолекулы» «Клинические исследования».
Впрочем, то, что эти вакцины безопасны, было ожидаемо — острее стоял вопрос об их эффективности (особенно после того, как ВОЗ и FDA были готовы признать эффективной вакцину, которая снижает заболеваемость даже на 50%). Но, судя по данным исследований III фазы, вакцины НИЦ им. Гамалеи, Pfizer/BioNTech и Moderna превзошли самые смелые ожидания и показывают эффективность в предотвращении COVID-19 выше 90% [2], [10], [11].
Обновление от 04.07.2021: уже накоплено много данных о безопасности вакцинации против коронавируса для людей с хроническими, онкологическими и аутоиммунными болезнями: «Сердечно-сосудистые заболевания не только не являются препятствием для вакцинации [против коронавирусной инфекции], но и являются дополнительным показателем для ее проведения», — информирует главный внештатный специалист-кардиолог Департамента здравоохранения города Москвы, профессор Е.Ю. Васильева. Ей вторит профессор М.Б. Анциферов, главный внештатный специалист Департамента здравоохранения города Москвы по профилю «эндокринология»: «Вакцинация от COVID-19 обязательно показана взрослым больным сахарным диабетом, ожирением, пациентам с другими эндокринными заболеваниями (. ). Приоритетными для вакцинации являются лица, страдающие сахарным диабетом с коморбидными сердечно-сосудистыми заболеваниями».
Еще не вечер: посмотрим что с вами будет года через два!
У скептиков не вышло спекулировать на опасности прививок (ведь после них людей не «откачивают пачками»), и они нашли новую опасность — долгосрочные последствия. А их так просто не опровергнешь! Если во времена Дженнера было принято стращать мутантами вроде человека-коровы, то нынче запугивают раковыми заболеваниями и проблемами с будущими детьми. А когда дело касается смертельных болезней и детей, критическое мышление может отказать. К тому же онкологические заболевания довольно распространены, и у части привитых (впрочем, так же как у непривитых или переболевших) что-нибудь обязательно обнаружат, поэтому сторонники этой идеи всегда могут гордо заявить: «Я же говорил!».
Наш мозг работает так, что если очень нужно найти закономерности, они найдутся: например, можно с успехом развить идею, что рак «косит» любителей овсянки или завсегдатаев кинотеатров. Раз люди, которые делают это, заболевают — значит, есть связь! Однако не всегда одно событие является следствием другого, даже если между ними прослеживается логика или временнáя взаимосвязь. Если говорить об онкологических заболеваниях, якобы возникающих из-за векторных вирусов «Спутника», то здесь, как ни странно, непривитые рискуют не меньше остальных: трудно найти человека, никогда не заражавшегося тем или иным штаммом аденовируса. И если уж принимать на веру этот пункт, то все переболевшие ими обречены. Так что в своем желании найти что-то очень опасное в этой вакцине скептики переходят грани разумного: векторные медицинские аденовирусы изучают уже ни один десяток лет не только в вакцинах, но и в терапии раковых заболеваний [12]. И, кстати, еще раз хочу вернуться к тому, о чем писала выше: вполне возможно, что у переболевших COVID-19 повышен риск развития онкологических заболеваний. Так что если вы боитесь рака, поменьше болейте! Не хотите болеть — придется прививаться.
По американским данным, опубликованным 12 февраля 2021 года [14], частота анафилактических реакций для вакцины Pfizer/BioNTech оценивалась в 4,7 случаев на 1 млн доз; для Moderna — 2,5 случаев (на тот момент было введено 9 943 247 доз и 7 581 429 доз соответственно); смертельных исходов не было. У 34% привитых препаратом Pfizer/BioNTech и 26% привитых Moderna уже наблюдались анафилактические реакции на введение других вакцин.
Я собрала самые серьезные осложнения разных вакцин (и они далеко не смертельны):
Каждая жизнь ценна, но анафилактический шок в одном случае на миллион, из которого выводят с помощью противошоковой терапии, меркнет перед риском смерти от той же кори — а это грозит минимум двум пациентам из 1000 заболевших. Так что если вы боитесь новых вакцин, вам нужно рассуждать не о том, что будет года через два, а интересоваться состоянием здоровья привитых в течение пары месяцев после вакцинации в соответствии с поэтической инструкцией:
Один старичок из столицы
Решил от ковида привиться.
Россия не спит
И чутко следит
За тем старичком из столицы.
Если и будут какие-то отсроченные реакции, то именно в это время.
Что касается длительных «последствий», то непонятно, как может повлиять на здоровье прививка, сделанная в прошлом году. Это то же самое, как обвинять в чем-либо продукты, которые вы съели много месяцев назад! Тем не менее вакциноскептики считают, что всё не так просто. Они опасаются аденовирусных векторов «Спутника» со «схемами» сборки шиповидного белка, которые могут случайно встроиться в половые клетки и передать эти «инструкции» потомству.
Однако каков механизм этой метаморфозы? Ведь в вакцине используются медицинские аденовирусные векторы. Они лишены генов E1A и E1B, поэтому не могут размножаться [17]. Их задача — не заразить будущих детей, а доставить гены, отвечающие за формирование S-белка, в клетки, и на этом закончить свою миссию. После прививки векторный вирус проникает в восприимчивую к нему клетку (а не в первую попавшуюся «по дороге»), раскрывает свою оболочку и сбрасывает инструкции для сборки шиповидного белка. Собраться обратно он не сможет, да и сама клетка уже не жилец: как только она выставит белки коронавируса на своей мембране, ее уничтожат силы клеточного иммунитета, или активированные векторным вирусом внутренние белки p53 и pRB запустят процесс самоуничтожения — апоптоза [18]. Короче говоря, ожидать рождения коронадетей, у которых годами будет синтезироваться S-белок, нет никаких оснований.
Не будут ли вакцины бесполезны из-за новых штаммов?
Коронавирус — не грипп. У него нет возможности комбинировать несколько поверхностных антигенов, так как на его поверхности есть только шиповидный белок, поэтому в плане эффективности вакцин к мутантным штаммам с ним меньше проблем. В ходе эволюции вирус модифицирует структуру S-белка, но если он изменит его кардинально, это закроет путь к связыванию с клеточным рецептором АСЕ2, и он не сможет заражать клетки (рис. 2).
Рисунок 2. Механизм связи коронавируса и клетки. Коронавирус связывается с клеточным рецептором АСЕ2 с помощью шиповидного (Spike) белка, путь в клетку ему «открывает» сериновая протеаза TMPRSS2. Здесь можно провести аналогию с входной дверью: S-белок — это ключ, АСЕ2 — замок, а сериновая протеаза — рука, которая поворачивает ключ в замке и открывает дверь.
Это значит, что вакцины, стимулирующие иммунный ответ к цельному S-белку, будут эффективны. Вопрос лишь в том, насколько упадет их протективная способность. Здесь возможны разные варианты. Есть информация, что у Оксфордской вакцины от AstraZeneca (векторная, на аденовирусе шимпанзе) есть определенные проблемы с южно-африканским штаммом: судя по результатам небольшого исследования в Южной Африке, она не предотвращает легкое или умеренное заболевание (тяжелых случаев среди участников зафиксировано не было) [19]. При этом представители ВОЗ, опираясь на свои данные, уверяют, что «вакцина защищает привитых от тяжелого течения COVID-19, госпитализации и смерти, в том числе и в отношении новых штаммов».
С этой вакциной изначально был нюанс во время исследования III фазы, когда часть добровольцев была привита с нарушением схемы: сначала им ввели дозу с меньшим количеством аденовирусных частиц, а потом — «догнали» повышенной дозировкой через 2–3 месяца. Остальных прививали одинаковыми дозами с интервалом в 6 недель. В итоге наибольшая эффективность (90%) была у нестандартной схемы, а у обычной она оказалась менее 80% [9].
Что касается «Спутника V», то его «КПД» в отношении актуальных для России и Москвы штаммов постоянно мониторится. Руководитель научной группы НИЦ им. Н.Ф. Гамалеи Дарья Егорова рассказала «Службе новостей ООН», что еще «. ни разу не было повода сомневаться в ее эффективности». В интервью Reuters заместитель директора центра им. Гамалеи по научной работе Денис Логунов проинформировал, что в ходе исследования эффективности ревакцинации «Спутником» вакцина «. показывает очень хороший результат в отношении новых мутаций коронавируса, в том числе против штаммов из Соединенного Королевства и ЮАР». Опубликованных данных по поводу эффективности первичного курса вакцинации пока нет, но директор НИЦ им. Гамалеи Александр Гинцбург во время онлайн-брифинга Международного пресс-центра «Sputnik-Казахстан» рассказал, что «на сегодняшний день экспериментально проверено, в том числе и в лабораториях нашего института, что (. ) сыворотка, полученная от вакцинированных “Спутником V”, прекрасно нейтрализует британский вариант возбудителя COVID-19». В отношении других штаммов «работа сейчас находится в прогрессе».
Безусловно, мутации вируса, а также повторные случаи заболевания, внушают беспокойство, поэтому за эффективностью вакцин ведется усиленное наблюдение. И если для южно-африканского штамма есть данные о снижении протективности по крайней мере в отношении некоторых вакцин [20], [21], то с «британским» дело обстоит лучше. Недавно вышел препринт статьи из Великобритании с результатами исследования медработников, привитых мРНК-вакциной Pfizer/BioNTech с декабря 2020-го по февраль 2021 года, когда он уже доминировал в Соединенном королевстве. Через 21 день после прививки эффективность одной дозы против заражения коронавирусом составила 72% (вакцинация защищала и от бессимптомной инфекции); спустя неделю после второй — она увеличивалась до 86%. Результаты исследования в Израиле также предполагают, что вакцина от Pfizer эффективна против этого штамма: на момент проведения он обусловливал до 80% случаев COVID-19 в стране. Авторы оценили эффективность вакцины против симптоматического заболевания в 94%.
Обновление от 04.07.2021: статистика стран, в которых хотя бы одной дозой привито более 60% населения, показывает, что вакцины работают даже в отношении суперзаразной дельты («индийский» штамм): они не всегда предотвращают заражение, но защищают от тяжелого течения и смерти. Например, в Великобритании, уже который день бьющей рекорды по количеству зараженных — ежедневно в стране фиксируется более 20 тысяч людей с положительным тестом, — смертность остается на очень низком уровне (количество умерших с апреля 2021 года не превышает 20–30 человек в день — сравните с 1823 погибшими за одно только 20 января).
По словам главного инфекциониста США Энтони Фаучи, 99,2% умерших от коронавируса были непривиты: «Подавляющая часть людей, попавших в беду, — это непривитые», — заявил он NBC.
Заместитель директора по научной работе НИЦ им. Гамалеи Денис Логунов сообщил INTERFAX, что эффективность «Спутника V» в отношении дельты остается на уровне 90%. Нужно учитывать, что эксперименты по нейтрализации проводят в культуре клеток, поэтому их результаты нельзя полностью отождествлять с реальной ситуацией. Тем не менее показатель заболеваемости привитых, действительно, разительно отличается от непривитых: по данным Минздрава РФ и Роспотребнадзора на конец июня (в разгар третьей волны и рекордным количествам госпитализированных в РФ) он не превышал 0,5%.
Можно ли прививаться.
. если недавно были сделаны другие прививки?
В инструкции к «Спутнику V» не указан интервал между ним и другими вакцинами, поэтому руководствуемся Российским календарем прививок, который допускает минимальный интервал между дозами разных вакцин в один месяц. Подтверждает это и анкета, которую заполняют перед вакцинацией, — первым же пунктом надо ответить на вопрос: «Проводились ли вам профилактические прививки в течение последних 30 дней?». То есть если вы прививались всего пару недель назад, вакцинацию против коронавируса придется отложить; во всех остальных случаях можете смело записываться на прививку.
. если имеется онкологическое заболевание, в том числе в ремиссии?
Раковые заболевания не указаны в качестве противопоказаний ни в инструкциях к одобренным в РФ вакцинам (вот они: «Спутник V», «КовиВак», «ЭпиВакКорона»), ни на сайте стопкоронавирус.рф. Однако вкладыш к «Спутнику» предупреждает, что «из-за недостатка информации вакцинация может представлять риск для пациентов со злокачественными новообразованиями» (хотя, по словам директора НИЦ им. Гамалеи Александра Гинцбурга, «на данный момент нет онкологических заболеваний, которые являлись бы противопоказанием для “Спутника V”, исключение — химиотерапия»). Производитель советует принимать решение о прививке в каждом конкретном случае, исходя из ситуации и соотношения пользы и риска. При этом необходимо учитывать, что люди с онкологическими заболеваниями являются уязвимой группой в отношении тяжелого течения или осложнений COVID-19, и во всем мире их прививают. Например, в США единственным абсолютным противопоказанием к одобренным FDA вакцинам (Pfizer/BioNTech, Moderna) является тяжелая шоковая аллергическая реакция на предыдущую дозу или на вспомогательные компоненты. Никаких специальных ограничений для вакцинации онкологических больных там нет.
. у меня астма / диабет / аутоиммунное заболевание?
Астма не является ни противопоказанием, ни предостережением к одобренным вакцинам против коронавируса.
С аутоиммунными заболеваниями сложнее: у «Спутника» в инструкции стоят те же предостережения, что и для онкологических больных с предупреждением, что «стимуляция иммунной системы может привести к обострению заболевания». Проблема в том, что «стимуляция иммунной системы» вследствие COVID-19 может быть еще серьезнее вплоть до гиперреакции, поэтому в других странах людей с аутоиммунными заболеваниями прививают.
Снова обращаюсь к американской практике. CDC дает добро на вакцинацию, если у вас:
У таких пациентов вакцинация может быть менее эффективна по сравнению с иммунокомпетентными людьми. Несмотря на то, что данные по безопасности вакцин у людей с этими заболеваниями пока не опубликованы (а паралич Белла вообще был зафиксирован у нескольких участников клинических исследований вакцины Moderna), CDC и FDA не перестраховываются, так как защита от COVID-19 важнее и перевешивает гипотетические риски прививок.
А уж людей с болезнями, при которых повышен риск тяжелого течения COVID-19, CDC рекомендует прививать в первую очередь. К ним относятся:
Возвращаясь к «народным» отчетам в Telegram, астматики, диабетики и люди с различными аутоиммунными заболеваниями охотно прививаются «Спутником».
Обновление от 04.07.2021: о правилах вакцинации людей с хроническими и аутоиммунными заболеваниями можно узнать из рекомендаций главных внештатных специалистов Департамента здравоохранения города Москвы.
. если я беременна или кормлю грудью?
Беременные и кормящие в России — священные персоны. Всё, что касается будущих малышей и грудничков, в нашей стране имеет оттенок «как бы чего не случилось». Это касается любого медицинского вмешательства: вы кормящая и заболели — лечитесь подорожником — больше ничего нельзя! (Хотя на самом деле уже давно известно, что кормящих можно лечить большим спектром медикаментов — LactMed и справочник Medications and Mothers’ Milk Томаса Хейла в помощь.) Естественно, всё то же самое относится и к вакцинации: «Прививки беременным? Что вы! Как можно?». У нас даже вакцина против дифтерии, коклюша и столбняка «Адасель», которой во всем мире прививают беременных, не одобрена для прививок будущим мамам. Но хорошо хоть не запрещена и содержит важное примечание: «Вакцинация при беременности не рекомендуется, за исключением случаев очевидного риска заражения коклюшем. В связи с тем, что вакцина является инактивированной, риск для эмбриона или плода маловероятен».
Переходим к коронавирусу. Беременность и лактация указаны в инструкциях к отечественным вакцинам в разделе «Противопоказания» (с 25.06.2021 беременность больше не является противопоказанием к вакцинации «Спутником V»). Но сделано это лишь потому, что их эффективность и безопасность у беременных и кормящих пока не изучались. Не изучались они нигде в мире, но как минимум в Великобритании, Израиле и США беременные и кормящие могут привиться против коронавируса, не скрывая своего положения: «Беременные, входящие в группу, рекомендованную для вакцинации от COVID-19, могут привиться». То же самое касается кормящих: гинекологи Великобритании прямым текстом заявляют, что «. нет правдоподобного механизма, с помощью которого компоненты вакцины могли бы попасть к ребенку через грудное молоко. Поэтому не нужно прекращать грудное вскармливание, чтобы пройти вакцинацию против COVID-19». Такое решение было принято по трем причинам:
По данным FDA на конец февраля 2021 года, ту или иную одобренную в США вакцину привили более 30 000 беременных женщин. В начале февраля Энтони Фаучи сообщил прессе, что было привито около 20 000 беременных, и их состояние не вызывает беспокойства.
Обновление от 04.07.2021: часто задают вопрос, может ли вакцинация негативно влиять на фертильность. Такие опасения беспочвенны: «Нет никаких доказательств или теоретических оснований для того, чтобы предполагать влияние какой-либо вакцины на фертильность мужчин или женщин, — указано в руководстве Ассоциации специалистов и ученых-репродуктологов британского общества фертильности. — Люди репродуктивного возраста должны получить вакцину против COVID-19, в том числе и те, которые пытаются завести ребенка или планируют беременность».
Можно ли прививаться во время беременности?
Надо уже привыкнуть к мысли, что беременным можно (и нужно) прививаться. Во время беременности разрешены любые инактивированные и полисахаридные вакцины (табл. 1). Не рекомендованы только живые: вакцинный вирус размножается и, в теории, может нести риск для плода. Но даже если беременную привили живой вакциной (например, в первые дни или недели), беременность не прерывают: наблюдение за привитыми живыми вакцинами против кори, краснухи, паротита и полиомиелита (ОПВ) не выявили рисков для плода или будущих мам.
Вакцина | Рекомендации для беременных или примечание (CDC) |
---|---|
Разрешены и рекомендованы | |
Грипп (инактивированные вакцины) | Прививают на любом сроке, но по возможности — в III триместре |
Дифтерия, коклюш, столбняк | Прививают после 28 недели беременности |
По показаниям (при высоком риске заразиться) | |
Коронавирус (векторные, мРНК) | |
Гепатит А (инактивированная вакцина) | Решают на основании риска и пользы для беременной (то есть прививают при высоком риске заражения) |
Гепатит В (рекомбинантная вакцина) | Рекомендована для беременных из группы высокого риска |
Конъюгированные вакцины против менингококка ACWY («Менактра») | |
Менингококк В (рекомбинантная вакцина) | Решение принимают в соответствии с соотношением риска и пользы |
Инактивированная вакцина против полиомиелита | Прививки разрешены в случае необходимости |
Бешенство (инактивированная вакцина) | Для вакцин против бешенства противопоказаний нет |
Брюшной тиф | Беременным рекомендовано использовать Ви-полисахарид (вакцина «ВИАНВАК») |
Желтая лихорадка | Можно прививать, если польза превышает риск |
Сибирская язва | Только при высоком риске заражения |
Не рекомендованы, но вакцинация не являются показанием для аборта | |
Корь, краснуха, паротит Ветряная оспа Грипп (живая вакцина) | Живые вакцины, не рекомендованы |
ВПЧ (рекомбинантная вакцина) | Не рекомендована, так как по ней нет данных |
Вакцины против пневмококка (полисахаридные и конъюгированные полисахаридные) | Нет данных по поводу конъюгированных вакцин. Полисахаридные вакцины: у новорожденных, чьи матери были непреднамеренно привиты во время беременности, не было зарегистрировано неблагоприятных последствий |
. если я очень пожилой человек?
Совершенно не стоит волноваться из-за возраста! Самому старшему привитому добровольцу III фазы клинических исследований «Спутника» было 87 лет [2]. Кроме того, в нем участвовало 2144 человека старше 60 лет: 1611 человек в группе привитых и 533 — в контрольной. В ходе массовой вакцинации в домах престарелых и пансионатах для ветеранов Москвы было привито свыше 9000 человек. Самому старшему было 104 года, девяти — более 100 лет, 338 пенсионеров были старше 90 лет. Как сообщает пресс-служба Департамента труда и социальной защиты населения города Москвы: «все они чувствуют себя хорошо». Без эксцессов пережили прививки мРНК-вакциной королева Великобритании Елизавета II (94 года) и принц Филипп (99 лет). Королевская чета привилась в начале января этого года.
. если я уже переболел?
Не все болезни дают длительный или пожизненный иммунитет. SARS-CoV-2 не исключение и подложил всем переболевшим большую свинью: уже отмечаются повторные заболевания (правда, пока речь идет о «редких случаях»). Плохо то, что второй эпизод бывает тяжелее первого. Мало того, есть заболевшие всего через три месяца после выздоровления. Так что вне зависимости от того, болели вы или нет, прививаться необходимо. Это уже признанный факт, о котором недавно объявила и главный научный сотрудник ВОЗ Сумья Сваминатан. Вопрос лишь в том, когда именно делать прививку. Если вы переболели недавно, и у вас высокий титр антител, с вакцинацией лучше подождать. Если по сравнению с предыдущим анализом титр сильно понизился, можно прививаться. Минимальным интервалом между диагностикой COVID-19 и вакцинацией считается 90 дней (обновление от 04.07.2021: по российским рекомендациям, переболевшим можно прививаться через полгода после болезни, невзирая на титр. А в США рекомендуют прививаться сразу после выздоровления).
Прививки переболевшим безопасны и не так редки, как кажется на первый взгляд: тех, кто переболел, прививают против коклюша, дифтерии, столбняка, ветрянки/кори/краснухи/паротита (при вакцинации комплексной вакциной против этих инфекций), а теперь еще и от коронавируса. Факт перенесенного заболевания не повышает риск тяжелых реакций или «отсроченных последствий». К тому же у переболевших прививки могут быть эффективнее, чем у неболевших. По крайней мере, у перенесших COVID-19 участников исследования Robust spike antibody responses and increased reactogenicity in seropositive individuals after a single dose of SARS-CoV-2 mRNA vaccine [24] титр нарастал быстрее и в некоторых случаях был выше, чем у неиммунных.
. если я боюсь делать прививки?
Если вы не боитесь болеть, вас вряд ли что-либо переубедит. Однако чем прививка может так настораживать? Ведь в отличие от коронавируса, она не несет риска госпитализации в «красную зону», не вызывает поражение легких в 50% и более, а также прочие «радости», включая длительную волнообразную болезнь и депрессию! Вакцины, пусть даже новые и непроверенные десятком лет практики, всё равно безопаснее заболевания: они не содержат способного к размножению вируса (многие не содержат его вообще), а значит, их риски для здоровья не идут ни в какое сравнение с опасностью COVID-19.
Судя по данным небольшого исследования Are vaccines safe in patients with Long COVID? A prospective observational study [25], после вакцинации больные с long COVID быстрее поправляются.
. не понимаю, зачем прививаться против болезни со смертностью всего 2%?
Два процента — это высокая смертность! Она означает, что умирает каждый пятидесятый заболевший. При массовой заболеваемости цифры будут колоссальными: если заболеет миллиард человек, умрут 20 миллионов. Причем, это не только пожилые, которым далеко за 80 лет: по сравнению с детьми и подростками 5–17 лет даже у 30-летних в 45 раз повышен риск смерти из-за коронавируса (табл. 2). Кроме того, в эти 2% не входят те, кому отложили операцию, не повезли в больницу или не успели оказать медицинскую помощь, так как «все на ковиде».