Что означает эпсилон в физике
что какой эпсилон
Ε, ε (название: э́псилон, греч. έψιλον) — 5-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 5. Происходит от финикийской буквы hé — hé. От буквы «эпсилон» произошли латинская E и кириллическая Е. Название «эпсилон» (греч. Ε ψιλόν — «е простое» ) было введено для того, чтобы отличать эту букву от созвучного сочетания αι.
Использование
Заглавная буква эпсилон в основном не используется как символ, поскольку пишется так же, как и заглавная латинская буква E.
В различных дисциплинах при помощи строчной буквы ε обозначаются:
в математическом анализе — положительное сколь угодно малое вещественное число; см. примеры в статье Предел последовательности;
в алгебре — предельное порядковое число последовательности \omega,\omega^<\omega>,\omega^<\omega^<\omega>>,\dots.
в теории множеств — отношение принадлежности элемента множеству (такое обозначение является устаревшим, сейчас для той же цели используется символ ∈);
в тензорном исчислении — символ Леви-Чивиты;
в теории автоматов — эпсилон-переход;
в физике — угловое ускорение; коэффициент экстинкции оптического поглощения; проводимость среды; электронный захват; относительное удлинение; диэлектрическая проницаемость среды; энергия активации; ЭДС; ε0 — универсальная электрическая постоянная.
в астрономии — пятая (как правило) по яркости звезда в созвездии;
в программировании — точность численного типа данных;
в информатике — пустая строка;
в фонетике — неогубленный гласный переднего ряда средне-нижнего подъёма.
в теории метаболического контроля — эластичность фермента
Что такое предел? Что такое |Xn-A| Математика Наука
Для начала успокойтесь, я понимаю на носу экзамен, но для математики нужна «холодная голова». Сейчас мы во всем разберемся, все очень просто на самом деле 🙂
Начнем с того, что вы немного запутались в обозначениях. Последовательность принято записывать в фигурных скобках:
Я допускаю, что иногда лектор (учитель) опускает фигурные скобки и обзывает последовательность просто Xn, и тут уже надо понимать из контекста, где речь идет о целой последовательности, а где о ее конкретном элементе (это не сложно, как правило).
Теперь, собственно, предел. Говорим о числовых последовательностях (для нечисловых все тоже самое, только слова другие). Так как нельзя брать предел от числа — это бессмыслица, то нет нужды писать фигурные скобки в пределе : lim
Запись, lim Xn = A, значит, что при стремлении n к бесконечности, то есть вы берете все больше и больше членов последовательности
Вот собственно и все! Теперь вы можете попробовать посмотреть, как работает это определение на простых последовательностях, например:
2)
Обратите внимание, в первом случае предел не принадлежит последовательности, а во втором — принадлежит.
ЭПСИЛОН-РАЗЛОЖЕНИЕ
Уменьшение числа степеней свободы (в единице объёма) при описании критич. явлений проводится обычно посредством перехода от микроскопич. узельных, или «ячеечных», спинов к макроскопич. квазинепрерывным «блочным» спинам, определяемым как нек-рое среднее (разумеется, не в термодинамич. смысле) от b d дискретных ячеечных спинов. Здесь b>=1— целое число, указывающее, во сколько раз каждое из d рёбер гиперкубич. спинового «блока» превосходит постоянную исходной решётки. Описанная операция проводится столько раз, сколько необходимо, чтобы линейные размеры блока стали порядка x (очевидно, это вполне аналогично операции сглаживания или крупнозернистого усреднения, используемой, напр., в гидродинамике). С др. стороны, переход к блочным спинам, обладающим пространственным разрешением
С др. стороны, учитывая, что величина
описывает спиновую конфигурацию в масштабах вплоть до b
суммирование по i и j проводится от 1 до n, а модули всех волновых векторов под знаком суммы ограничены сверху величиной Л.
,
В окрестности m* действие преобразования РГ имеет вид
k 2 , а массовый оператор S(k) в низших порядках по взаимодействию может быть разложен по степеням ln k:. С др. стороны, согласно результатам анализа по методу РГ, вблизи критич. точки G(k)
от «несущественных», возникающих благодаря наличию несуществ. переменной t 2 . с малым показателем у 2 = О(e); для этого необходимо подобрать спец. вид ф-ции u(e) (обычно такой, чтобы обратить t 2 . в нуль). Очевидно, от выбора и(e), равно как и от величины и способа введения параметра обрезания L, согласно гипотезе универсальности, не должен зависеть окончательный результат; описанная процедура наз. исключением медленного переходного процесса или расширением критич. области (Вильсон, 1971).
Родственными Э.-р. в квантовой статистич. физике являются также разложения на малых расстояниях и на световом конусе для произведений локальных токов в КТП. Напр., произведения двух локальных токов J(x+l) и J(x—l) при малых пространственно-временных векторах l ведут себя след. образом:
Метод РГ для критич. явлений, в том числе Э.-р. до настоящего времени не имеет вполне надёжного матем. обоснования, а также к.-л. однозначной реализации. Существует ряд подходов, основанных на использовании теории возмущений, рекуррентных ф-л, дифференц. ур-ний и т. п., каждый из к-рых обладает своими преимуществами и недостатками. Однако в целом метод РГ наиб. предпочтителен для анализа критич. явлений, т. к. в отличие от прямых методов вычисления статистич. суммы и корреляц. ф-ций преобразования РГ действуют в пространстве несингулярных величин и предоставляют широкие возможности для построения аппроксимаций, в т. ч. прямых численных расчётов с использованием ЭВМ.
Лит.: Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер. с англ., М., 1975; Ландау Л. Д., Лиф-шиц Е. М., Статистическая физика, ч. 1, 3 изд., М., 1976, p 147; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., М., 1982; Pfeuty P., Toulouse G., in: Introduction to the renormalization group and to the critical phenomena, L.- N. Y., 1977; Ma Ш,, Современная теория критических явлений, пер. с англ., М., 1980; Изюмов Ю. А., Скрябин Ю. Н., Статистическая механика магнитоупорядочен-ных систем, М., 1987. Ю. Г. Рудой.
Диэлектрическая проницаемость и электрическая постоянная
Электрическая постоянная — характеристика вакуума, она описывает его электрические свойства. А диэлектрическая проницаемость описывает свойства веществ – диэлектриков, ослабляющих взаимодействие зарядов.
Электрическая постоянная
Обозначают ее \(\large \varepsilon_<0>\), она описывает электрические свойства вакуума и является одной из фундаментальных физических постоянных.
Значение электрической постоянной равно:
Совместно с магнитной постоянной (ссылка) \(\large \mu_<0>\) определяет скорость, с которой в вакууме распространяются электромагнитные волны (например, видимый свет).
В формуле закона Кулона присутствует константа «k». Число «k» вычисляют по формуле, которая связывает его с постоянной \(\large \varepsilon_<0>\) так:
Так же, эта константа встречается в формуле, описывающей напряженность электрического поля.
Диэлектрическая проницаемость вещества
Некоторые вещества могут ослаблять взаимодействие зарядов.
Вещества, ослабляющие взаимодействие заряженных частиц, называют изолирующими веществами, или диэлектриками.
Для пояснения рассмотрим электрические свойства дистиллированной воды.
Расположим в вакууме два положительных заряда на некотором расстоянии один от другого, они будут отталкиваться Кулоновскими силами.
Затем, не меняя заряды и расстояние между ними, переместим их в дистиллированную воду. Мы обнаружим, что в воде они будут отталкиваться слабее в 81 раз (рис. 1).
В нижней части рисунка силы отталкивания зарядов в воде обозначены короткими синими векторами. Длина этих векторов должна быть в 81 раз меньше, чем длина векторов сил в вакууме в верхней части рисунка. Однако, векторы имеют большую длину на рисунке, чем в реальности, так как, если их уменьшить в нужное число раз, то их невозможно будет рассмотреть.
Диэлектрическая проницаемость \(\large \varepsilon\) описывает изолирующие свойства диэлектриков. Она показывает, во сколько раз внутри вещества — диэлектрика ослабляется взаимодействие зарядов.
Ослабление взаимодействия происходит за счет ослабления напряженности электростатического поля в диэлектрике.
Диэлектрическая проницаемость некоторых веществ
Вы можете использовать данные таблички для решения большинства школьных задач физики.
Для некоторых веществ значения проницаемости округлены. К примеру, существуют стекла, имеющие значение проницаемости 6,0, и в то же время, проницаемость некоторых стекол может достигать значения 10,0. А в таблице для стекла указано среднее значение 8,0.
Чтобы осуществить более серьезные расчеты, не относящиеся к учебным, пожалуйста, воспользуйтесь специализированными справочниками.
эпсилон-разложение
Корреляционная длина и параметр обрезания. В основе построения преобразований РГ для описания критических явлений лежит общая физ. идея существенного сокращения эфф. числа степеней свободы макроскопич. физ. системы (аналогично тому, как это имеет место в термо- или гидродинамике при переходе от микроскопич. к макроскопич. описанию). Условиями такого сокращения являются наличие в системе взаимодействий только с коротким радиусом, а также резкое возрастание к о р р е л я ц и о н н о й д л и н ы x (или, что то же, радиуса корреляции r 0 ) вблизи критич. точки Т с ; величина x характеризует мин. размер области, в к-рой свойства вещества в достаточной степени передают свойства макроскопич. образца. При больших значениях x весьма правдоподобной выглядит г и п о т е з а п о д о б и я (см. ниже), приводящая к явлению у н и в е рс а л ь н о с т и, т. е. независимости физ. свойств системы от деталей строения гамильтониана (в т. ч. от значений входящих в него констант связи разл. взаимодействий). Существенными оказываются лишь значения размерностей п и d, где п характеризует симметрию параметра порядка (т. е. число компонент вектора спина или квазиспина; см. Спиновый гамильтониан ),a d-число измерений пространства дискретной решётки; соответственно все квазиспиновые модели подразделяются на к л а с с ы э к в и в а л е н тн о с т и (n, d)(рис. 1).
Уменьшение числа степеней свободы (в единице объёма) при описании критич. явлений проводится обычно посредством перехода от микроскопич. узельных, или «ячеечных», спинов к макроскопич. квазинепрерывным «блочным» спинам, определяемым как нек-рое среднее (разумеется, не в термодинамич. смысле) от b d дискретных ячеечных спинов. Здесь b>=1-целое число, указывающее, во сколько раз каждое из d рёбер гиперкубич. спинового «блока» превосходит постоянную исходной решётки. Описанная операция проводится столько раз, сколько необходимо, чтобы линейные размеры блока стали порядка x (очевидно, это вполне аналогично операции сглаживания или крупнозернистого усреднения, используемой, напр., в гидродинамике). С др. стороны, переход к блочным спинам, обладающим пространственным разрешением
С др. стороны, учитывая, что величина
описывает спиновую конфигурацию в масштабах вплоть до b
суммирование по i и j проводится от 1 до n, а модули всех волновых векторов под знаком суммы ограничены сверху величиной Л.
,
В окрестности m* действие преобразования РГ имеет вид
от «несущественных», возникающих благодаря наличию несуществ. переменной t 2 с малым показателем у 2 = О (e); для этого необходимо подобрать спец. вид ф-ции u(e) (обычно такой, чтобы обратить t 2 в нуль). Очевидно, от выбора и(e), равно как и от величины и способа введения параметра обрезания L, согласно гипотезе универсальности, не должен зависеть окончательный результат; описанная процедура наз. исключением медленного переходного процесса или расширением критич. области (Вильсон, 1971).
Родственными Э—р. в квантовой статистич. физике являются также разложения на малых расстояниях и на световом конусе для произведений локальных токов в КТП. Напр., произведения двух локальных токов J(x+l) и J(x—l) при малых пространственно-временных векторах l ведут себя след. образом:
Метод РГ для критич. явлений, в том числе Э—р. до настоящего времени не имеет вполне надёжного матем. обоснования, а также к—л. однозначной реализации. Существует ряд подходов, основанных на использовании теории возмущений, рекуррентных ф-л, дифференц. ур-ний и т. п., каждый из к-рых обладает своими преимуществами и недостатками. Однако в целом метод РГ наиб. предпочтителен для анализа критич. явлений, т. к. в отличие от прямых методов вычисления статистич. суммы и корреляц. ф-ций преобразования РГ действуют в пространстве несингулярных величин и предоставляют широкие возможности для построения аппроксимаций, в т. ч. прямых численных расчётов с использованием ЭВМ.
Лит.: Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер. с англ., М., 1975; Ландау Л. Д., Лиф-шиц Е. М., Статистическая физика, ч. 1, 3 изд., М., 1976, p 147; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., М., 1982; Pfeuty P., Toulouse G., in: Introduction to the renormalization group and to the critical phenomena, L.- N. Y., 1977; Ma Ш,, Современная теория критических явлений, пер. с англ., М., 1980; Изюмов Ю. А., Скрябин Ю. Н., Статистическая механика магнитоупорядочен-ных систем, М., 1987. Ю. Г. Рудой.