Что означает число пи в физике
Что такое Число Пи
Число π (Пи) является математической константой, первоначально было определено как отношение длины окружности к её диаметру, является иррациональным числом и примерно равно 3.1415926535.
С помощью Пи мы ищем периметр окружности, а Пи называется именно так из-за того, что греческое слово περιμετρο («периметр») начинается именно с этой буквы.
Число Пи используют многие специалисты в своих профессиях, такие как: архитекторы, астрономы, физики, химики и другие.
Число Пи используется не только в математике (периметр), но и в строительстве башен, плотин и мостов, в астрономии — для вычислений орбиты спутника. Также в преобразованиях Фурье (применяется во многих областях науки), для вычисления общей теории относительности и для множества вычислений в статистике и квантовой механике.
Число пи полностью
Пи является иррациональным числом и поэтому имеет бесконечное количество знаков после запятой. С каждым годом разные страны устанавливают новые рекорды по вычислению количества знаков после запятой.
На данный момент науке уже известны более чем 2 триллиона знака после запятой. Неполное число Пи, с одной сотней знаков после запятой представлено далее:
Как получить число π
Разделить длину окружности на её диаметр ( C/d=π )
Для этого возьмите любую окружность (подойдёт любая тарелка или крышка), измерьте длину её окружности (C) и диаметр (d), а затем разделите первое на второе.
Вычисление Цзу Чунчжи (математик и астроном)
Этот способ очень простой, но даёт только 6 верных цифр после запятой. Вы можете разделить 355 на 113 (Пи≈355/113), это равно 3,1415929204 (а Пи ≈ 3,1415926535. ).
Формула Лейбница для вычисления π
Возьмите 4 («разделённое на 1», что даёт 4) и вычтите 4, разделённое на 3. Затем добавьте 4, разделённое на 5. Затем вычтите 4, разделённое на 7.
Продолжайте чередовать сложение и вычитание дробей с числителем 4 и знаменателем каждого последующего нечётного числа.
Чем больше раз вы это сделаете, тем более точное у вас будет значение пи.
История числа Пи
Число Пи известно уже почти 4000 лет. Одна вавилонская табличка (около 1900–1680 гг. до н. э.) указывает, что они обозначали это число как π = 3,125, что уже достаточно точное приближение к современному.
«Папирус Ахмеса» (папирус Ринда или папирус Райнда, около 1650 г. до н. э.) даёт нам представление о математике древнего Египта. Египтяне рассчитывали площадь круга по формуле, по которой приблизительное значение для Пи было 3,1605.
Первое вычисление числа Пи было сделано Архимедом (287–212 гг. до н. э.). Он определил, что истинное значение Пи находится между и
.
На протяжении почти тысячи лет самым близким значением числа Пи было вычисление китайского математика и астронома Цзу Чунчжи (429—500 гг.), сделанное в 480-х годах. Он вывел следующее: 3,1415926 Пи
3,1415927 и Пи ≈ 355/113.
На данный момент используется алгоритм Чудновских — это быстрый алгоритм, изобретённый братьями Чудновскими, для вычисления числа π. Он показывает более триллиона знаков после запятой.
В 1700-х годах математики начали использовать греческую букву π, введённую Уильямом Джонсом в 1706 году. Использование символа было популяризировано Леонардом Эйлером, который принял его в 1737 году.
А если бы мы не знали Пи?
Путешествия на автомобиле
Для начала пи позволяет нам точно рассчитывать и создавать окружности. Представьте, что колёса вашей машины немного отличаются друг от друга, каждое слегка смещено от центра. Вы не только будете постоянно тратить кучу денег на механика, но и поездки у вас также будут менее удобными.
Путешествия по воздуху
Пи играет важную роль в расчёте времени и расстояния путешествия на самолёте. Когда самолёты летают на большие расстояния, они летят по округлой дуге потому что, Земля круглая.
Ни телевизора, ни радио, ни телефонов
Инженеры используют пи для расчёта и оптимизации звуковых волн.
Казино
Всеми любимая формула нормального распределения (также называемая распределением Гаусса) считается с помощью пи. Проще говоря: пи играет ключевую роль в формулах по теории вероятности и статистике — поэтому с пи азартные игры становятся намного более предсказуемыми. И с этими расчётами люди открывают казино, зная наверняка, какой процент их клиентов будет выигрывать и проигрывать.
Не было бы многих игр, ведь футбольные, баскетбольные, теннисные и другие мячи должны быть абсолютно круглыми.
Число Пи интересные факты
Число π по-английски произносится «пай» — это означает пирог, а слово пирог по-русски начинается с «пи».
Число Пи имеет два неофициальных праздника в году: первый — 14 марта (в США эта дата записывается как 3.14), вторая — 22 июля (22/7 : деление 22 на 7 является приблизительным результатом Пи).
Станислав Улам, польский и американский математик, в 1965 году, написал на бумаге в клетку цифры, входящие в число пи. Он поставил в центре 3 и двигался по спирали против часовой стрелки, записывая числа после запятой, при этом он обводил все простые числа кружками.
Он пришёл одновременно в удивление и ужас, заметив, что кружки выстраивались вдоль прямых. После, с помощью специального алгоритма, математик сделал на основе этого рисунка цветовую картину, которую называют «Скатерть Улама».
Число Пи можно даже играть на музыкальном инструменте поставив ноты в его порядке.
Числу «Пи» поставили несколько памятников по всему миру.
Существует стиль письма, который называется «пилиш» (от «пи», английский «pilish»), в котором длина последовательных слов соответствует цифрам числа πи. В первом слове произведения должно быть 3 буквы, во втором — одна, потом — четыре, следом — опять одна, затем пять, и так далее по цифрам π.
Например, такая поэма на английском языке:
Как запомнить число π
Один из самых популярных способов — это запомнить фразу, а затем посчитать количество букв в каждом слове.
Например, такие фразы:
Для того чтобы запомнить число Пи, также можно выучить небольшое стихотворение из книги Сергея Боброва «Волшебный двурог»:
“Чтобы нам не ошибаться,
Надо правильно прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Ну и дальше надо знать,
Если мы вас спросим —
Это будет пять, три, пять,
Восемь, девять, восемь”.
Некоторые могут подумать, раз это отношение обозначается греческой буквой, стало быть, его вывел некий греческий математик. На самом деле об этом история умалчивает. Зато имеются данные о том, кто впервые использовал в своих работах это обозначение.
Все окружности похожи
Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:
C1 | C2 | |
= | ||
d1 | d2 | (1) |
Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:
Как раз эта формула и является проводником в мир окружностей для семиклассников.
Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:
где S – площадь круга, C – длина окружности (круга). Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = π r 2 и длины окружности С = 2 π R, то мы получим:
(2 π R) 2 | |
π R 2 | = |
12 |
В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:
8 | 2 | |||
S | = | ( | d | ) |
9 |
Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.
По стопам Архимеда
Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: «переложите одну спичку так, чтобы равенство стало верным».
10 | 6336 | 14688 | 1 | ||
3 | π | ||||
71 | 1 | 1 | 7 | ||
2017 | 4673 | ||||
4 | 2 |
можно записать проще: 3,140 909 π π за 3,14 для удобства подсчета.
π D 2 |
S= π R 2 = |
4 |
где S – площадь окружности, R – ее радиус, D – диаметр окружности.
Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:
где C – длина окружности, R – радиус, d – диаметр окружности.
Понятно, что диаметр d равен двум радиусам R.
Из формулы длины окружности можно легко найти радиус окружности:
C | C |
R= | = |
2 π | d |
Обозначения для этих формул остаются те же.
Диаметр окружности можно найти по формуле:
C | |
D= | =2R |
π |
где D – диаметр, С – длина окружности, R – радиус окружности.
Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:
α | ||
S | = | π R 2 |
360˚ |
где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.
Такое загадочное 3,14
И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.
Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием «Пи». Фильм получил множество наград.
Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют «День числа Пи». К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.
Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.
Давайте развлечемся!
Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.
Физический смысл числа пи
Перевод статьи на английский язык, любое использование опубликованного в статье материала и упоминание о статье в англоязычных публикациях без разрешения автора запрещается!
1.
Когда Аристарх Самосский сказал, что Земля вращается, древние греки его упрекнули: «Вот же очевидное – солнце встаёт на одной стороне, бежит по небу весь день и садится на другой стороне. Так не морочь нам голову, мы видим, что солнце вращается вокруг нас на неподвижной Земле!»
Если сегодня кто-то скажет, что окружностей в действительности не бывает, что всякая окружность – это многоугольник с огромным, но конечным числом сторон, на него посмотрят, в лучшем случае, как на чудака: «Вот же очевидное – мы рисуем циркулем замкнутую линию. Так не морочь нам голову, мы видим, что это окружность!»
Любая окружность – это замкнутая линия, которая является границей круга в плоскости и возникает как траектория вращательного движения (вращения), а именно – как результат постоянного изменения направления перемещения в одну и ту же сторону на один и тот же постоянный угол. То есть изменяется не перемещение – этот процесс как происходил, так и продолжается, – а изменяется только направление перемещения! Если, к примеру, объект двигался с постоянной скоростью по инерции в какой-то своей инерциальной системе, то он так и продолжает в этой системе своё прямолинейное движение, а вот система (вместе с объектом, естественно) не сама, а под чьим-то воздействием поворачивает относительно определённого центра в пространстве. И в результате её поворота в пространстве объект в этом же пространстве изменяет направление своего перемещения. Таким образом, рассматривая вращение как процесс, мы обязательно имеем в виду не менее двух систем отсчёта – одну инерциальную и другую неинерциальную, в которой вращается инерциальная система. И замкнутая траектория вращения – линия, по которой перемещается вращающееся вокруг центра физическое тело, – образована одновременным движением тела и движением системы, которой это тело принадлежит.
Простейшее движение, а именно, перемещение материального объекта обеспечивается инерционными частицами – квантами материи, – так как они способны перемещаться только прямолинейно. А вращение объекта является результатом воздействий на него другого объекта или объектов. И если одно изменение направления – поворот – есть следствие одного воздействия, то вращение как постоянное изменение направления является, конечно, следствием воздействий, совершаемых с постоянной частотой. Так как каждое воздействие определяется в пространстве точкой приложения силы, то окружность – как траектория равномерного с постоянной скоростью перемещения физического тела – состоит из точек изменения направления и прямых отрезков перемещения одинаковой длины между этими точками, то есть является, в действительности, правильным многоугольником с очень большим количеством сторон очень малой длины.
2.
Считая, что угловое перемещение «ф» (греческая буква «фи») объекта вокруг центра системы равно отношению полного угла к количеству N угловых перемещений, мы пользуемся обозначением полного угла в радианах через двойное число «п» (греческая буква «пи»)
ф = 2п/N,
но это выражение является верным лишь в том случае, если мы под буквой «пи» подразумеваем развёрнутый угол в градусах, потому что, в отличие от точного значения полного угла в градусах (360), число «пи» не является точным постоянным значением (константой) для всех систем движения и не равно «N*ф/2», а вычисляется через синус половины измеренного угла перемещения
п = N*sin(ф/2).
Лишь для неизмеримо малых углов мы допускаем, что синус угла равен самому углу, то есть длина дуги равна стороне многоугольника, и тогда
sin(ф/2) = ф/2,
но надо помнить, что это – всего лишь наше допущение, которое не должно влиять на точность расчётов.
Мы привыкли определять иррациональное число «пи» как отношение длины окружности, которая всегда измерена приблизительно из-за постоянных поворотов, к длине её прямолинейного диаметра, измеряемого более точно, – это «геометрический», и, можно сказать, приближённый смысл числа. Но физический смысл его глубже, он определяется движением материальных объектов в пространстве. Число «п» («пи») – это отношение суммарной длины перемещения квантов материи, участвующих в процессе обращения материального объекта вокруг центра системы, к длине диаметра системы
п = NL/D = Nхd/nd = Nsin(ф/2),
где N=360/ф – количество сторон правильного многоугольника, образованного отрезками перемещения квантов материи, целое число;
ф (греческая буква «фи») – угловое перемещение кванта материи (угол, на который смещается в перспективе квант при «наблюдении» за ним из центра), может определяться непосредственным измерением угла или может определяться как отношение измеренной длины дуги, соответствующей стороне многоугольника, к измеренному радиусу окружности, описывающей многоугольник;
D = nd – длина максимальной диагонали в многоугольнике или диаметр круга, в который вписан правильный многоугольник, n – количество (целое число) фундаментальных длин в диаметре;
L = хd – расстояние перемещения кванта материи как длина стороны правильного многоугольника, х – количество (целое число) фундаментальных длин в стороне многоугольника;
d – фундаментальная длина.
Так как длина стороны вписанного многоугольника вычисляется через синус половины угла перемещения кванта материи
L=D*sin(ф/2),
отсюда следует, что
sin(ф/2) = х/n,
где «х» и «n» – целые числа.
Так как в заявленных условиях количество сторон N – линий движения квантов материи – равно произведению числа «пи» и количества фундаментальных длин в диаметре, которое по условию должно быть представлено целым числом «n»,
N=п*n,
то очевидно, что, кроме движения по окружности как по шестиугольнику, движение в остальных «рассчитанных» выше системах реально может совершаться лишь по эллипсу или спирали, то есть данные системы не могут представлять окружность. А настоящие окружности как «многоугольники движения» могут реально проявляться лишь в системах, где длина стороны многоугольника уже больше одной фундаментальной длины, то есть, при х=2 и больше. Но эта тема – движение в неинерциальных системах и возможности такого движения (вращения и обращения вокруг центра) – будет освещена, а частично уже раскрыта в других статьях по логофизике.
15 интересных фактов о числе Пи, о которых вы, возможно, не знали
Пи считается хлебом с маслом для математиков и инженеров. Это буквально круто, немного странно, но круто. Число Пи является математической константой, и оно определяет отношение между окружностью круга и его диаметром. С начала 19-го века (наиболее вероятно с середины 18-го века), это было обозначено греческой буквой «π». Это некоторые известные вещи о пи, но как насчет вещей, которые ты не знаешь? Хотите узнать некоторые неизвестные факты об этом интересном номере? Давайте наполним вас некоторыми интересными фактами о числе Пи.
11. Ваши банковские реквизиты можно найти в пи
Что ж, мы знаем, что число Пи является иррациональным числом, то есть его десятичное представление может длиться вечно. Технически, каждое возможное число, которое вы можете придумать, находится где-то в нем. Это включает в себя ваш контактный номер, дату рождения, номер вашего шкафчика и даже ваши банковские реквизиты. Более того, если у нас будет достаточно цифр, использование алгоритма, который может преобразовывать числа в буквы, позволит нам найти Библию, полное собрание сочинений Шекспира и Чосера или любую книгу, когда-либо написанную.
10. Использует в навигации
Пи играет важную роль в системах наведения, установленных на спутниках и космических станциях. Из всего, навигация в космосе на самом деле требует высокой точности. Для каждой вычисляемой десятичной цифры мы получаем большую точность. Но насколько мы должны быть точными, чтобы все работало правильно? Сьюзан Гомез из НАСА, управляющего Международной космической станцией по навигации, навигации и управлению (GNC), сообщает, что в большинстве расчетов с использованием Пи используются 15 цифр для GNC и 16 цифр для космической интегрированной системы глобального позиционирования / инерциальной навигационной системы (SIGI).
9. Истинная площадь круга никогда не может быть известна
8. Игла Буффона
Игла Буффона или просто проблема с иглой в вероятности была впервые указана Жоржем-Луи Леклерком, графом де Буффоном, в 18-м веке, когда падение иглы на лист, отмеченный линиями, определит вероятность того, что игла пересечет линию на странице. Важно отметить, что вероятность результата эквивалентна значению числа Пи.
Давайте разберемся с этим. В этом случае на самом деле есть две переменные: угол наклона иглы, давайте присвоим ему символ тета (θ) и расстояние между ближайшей линией и центральной точкой иглы. Тета может варьироваться от 0 ° до 180 °, который измеряется параллельно нарисованным линиям.
Выяснилось, что вероятность того, что игла прорежет линию при посадке, составляет ровно 2 / Пи или почти 64%. Это означает, что число Пи можно как-то рассчитать, используя технику Буффона, если у кого-то будет достаточно времени и терпения, чтобы пройти все симуляции. Чтобы понять это намного лучше, вы можете попробовать это.
7. Отношения между извилистыми реками и Пи
У Пи неожиданные отношения со многими явлениями в этом мире, включая извилистые реки. Как? Что ж, путь любой реки в основном описывается ее извилистостью, способностью изгибаться, перемещаться назад и вперед по ее пойме. Математически говоря, это длина извилистого пути, деленная на длину реки от начала до конца. Оказывается, что средняя река имеет извилистость числа Пи независимо от ее длины или количества поворотов на своем пути.
6. Преобразование Фурье и обработка сигналов
Пи играет еще одну очень важную роль в области «обработки сигналов». Это просто анализ, синтез и модификация сигналов. Но здесь действует сложная система. Эта сложная система представляет собой «преобразование Фурье», которое преобразует сигналы в частотный спектр. Мобильный телефон каждого, будь то его андроид или iPhone, выполняет преобразование Фурье, когда он связывается с местной сотовой вышкой.
Кроме того, формула оценивается вашим мобильным телефоном в цифровом виде с помощью определенного алгоритма, известного как «быстрое преобразование Фурье» или «БПФ», который был открыт математиками в 1950-х годах. Важно отметить, что каждый процесс включает в себя число π. Так что технически, есть определенное значение Пи где-то в вашем телефоне, будь то простой или смартфон.
5. Распределение вероятностей
Пи также играет важную роль в нормальном распределении вероятностей. Без сомнения, вы сталкивались с таким распределением вероятностей не один, а много раз. Они важны и часто используются в различных областях исследований, включая математику, физику и общественные науки. Это то, что вам нужно, от прогнозирования результатов теста ученика до измерения отдаленных сверхновых звезд.
Это правило большого пальца: всякий раз, когда вы видите, как Пи подкрадывается где-то в любом уравнении, убедитесь, что где-то в этом спрятан круг. В этом случае Пи вводится через интеграл Эйлера – Пуассона, который содержит квадратный корень из Пи.
4. Проблема с лентой
Предположим, вы хотите обернуть вокруг Земли ленту на экваторе, длина окружности которого составляет 24 900 миль (идеальная сфера). Теперь попытайтесь выяснить, сколько потребуется ленты, которая могла бы окружить Землю на расстоянии одного дюйма над ее поверхностью. Можно легко подумать, что для этого потребуется огромное количество ленты. Но на самом деле это не так. Мы расскажем вам, как.
Еще раз предположив, что Земля является идеальной сферой, у нас будет круг с окружностью 24 900 миль (на экваторе). Это означает, что радиус будет 24 900 / (2 * пи) или примерно 3963 миль. Теперь вторая лента, на дюйм выше поверхности Земли, будет иметь радиус на один дюйм больше радиуса Земли, что дает нам уравнение C = 2 Пи (r + 1) или C = 2 Пи (r) + 2 Пи.
Отсюда можно сказать, что окружность второй ленты увеличится на 2Пи. Фактически, независимо от того, какой первоначальный радиус увеличивает радиус, всегда будет 2Пи.
3. Последовательность Фибоначчи и вычисление числа Пи
Долгое время вычисления числа Пи основывались на двух методах: первый был разработан Архимедом, а второй был разработан Джеймсом Грегори, шотландским математиком в 1671 году. Однако оказывается, что последовательность Фибоначчи также может быть эффективно использована для вычисления значение Пи.
2. Самый первый расчет
Считается, что Пи был первоначально открыт древними вавилонянами около 4000 лет назад. Согласно Rhind Papyrus, древние египтяне вычислили значение Пи как приблизительно 3.1605. Но первый зарегистрированный метод для вычисления значения числа Пи был разработан греческим математиком Архимедом Сиракузским в 250 году до нашей эры.
Архимед знал о том факте, что он не обнаружил фактическое значение Пи, а лишь приблизительное значение в этих пределах. Таким образом, Архимед показал, что число Пи между 3 1/7 и 3 10/71. Этот алгоритм строго использовался учеными и инженерами на протяжении 1000 лет, из-за чего даже сегодня его иногда называют «постоянной Архимеда».
1. Скрытая связь между квантовой механикой и Пи
Физики недавно обнаружили связь между многовековой известной математической формулой Пи и квантовой механики, которая скрывалась годами. Это было в 1665 году, когда известный британский математик Джон Уоллис представил свою собственную версию формулы вычисления Пи. Исследователи из Университета Рочестера считают, что они нашли ту же формулу, скрывающуюся при расчете энергетических уровней атома водорода.
Краткие факты
С 1998 года, каждый год 14 марта, научное сообщество празднует день Пи. Этот конкретный день был выбран из-за его соответствия с 3.14, который является пи значение. Первое широко посещаемое празднование дня пи было организовано физиком Ларри Шоу. Интересно, что Альберт Эйнштейн родился 14 марта 1879 года.
В 2002 году группа японских исследователей из Токийского университета вычислила 1,24 триллиона цифр числа пи, используя мощный суперкомпьютер Hitachi SR 8000, побив все предыдущие рекорды.
По мнению некоторых математиков, вместо того чтобы называть его Безугловым, гораздо правильнее сказать, что круг имеет бесконечное число углов.