Что означает четность функции

Четные и нечетные функции

Вы будете перенаправлены на Автор24

Четные функции

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будет совпадать, то график этих функции будет подчиняться закону осевой симметрии по отношению к оси ординат (рис. 1).

Что означает четность функции

Нечетные функции

Так как при выборе равных по модулю с обоими знаками значений независимых переменных для любой четной функции значения самой функции будут также совпадать по модулю и отрицательны по знакам, то график этих функции будет подчиняться закону центральной симметрии по отношению к началу координат (рис. 2).

Что означает четность функции

Готовые работы на аналогичную тему

Функция общего вида

Функция общего вида никогда не будет симметрична оси ординат и началу координат. Пример функции общего вида изображен на рисунке 3.

Что означает четность функции

Пример задачи

Исследовать функцию на четность и нечетность и построить их графики.

Изобразим её на графике:

Что означает четность функции

Изобразим её на графике:

Что означает четность функции

Изобразим её на графике:

Что означает четность функции

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 07 2021

Источник

Четные и нечетные функции

Функция называется четной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График четной функции симметричен относительно оси ординат.

Например, — четные функции.

Что означает четность функции

Функция называется нечетной, если ее область определения симметрична относительно нуля и для любого x из ее области определения выполняется равенство

График нечетной функции симметричен относительно начала координат.

Например, — нечетные функции.

Что означает четность функции

Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида.

Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задания:

1. Проверьте, является ли функция четной (нечетной).

Область определения функции

Проверим, является ли чётной или нечётной. Если функция четна. Если функция нечетна.

— значит, функция нечётная, её график симметричен относительно нуля.

2. Проверьте, является ли функция четной (нечетной)

Область определения: все действительные числа.

— чётная, как сумма двух чётных функций.

Её график симметричен относительно оси y.

3. Проверьте, является ли функция четной (нечетной).

Область определения функции симметрична относительно нуля.

— чётная, её график симметричен относительно оси y.

Источник

Понятие четной и нечетной функции

Понятие четности и нечетности функции

Главное условие при исследовании функции на четность/нечетность — это симметричность области определения относительно 0. Если она не симметрична, то функция не является ни четной, ни нечетной, и дальнейшее исследование производить не нужно. Например, \(D(y)\in(-\infty;+\infty)\) симметрична относительно 0, а \(D(y):x\in(-5;9)\) — нет.

Четная функция

Функцию \(f(x)\) называют четной, если для любого значения х из области определения функции \(f(x)\) соблюдается равенство \(f(-x)=f(x).\)

Что означает четность функции

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

График четной функции симметричен относительно оси Ох.

Нечетная функция

Функцию \(f(x)\) называют нечетной, если для любого значения х из области определения функции \(f(x)\) соблюдается равенство \(f(-x)=-f(x).\)

Что означает четность функции

График нечетной функции симметричен относительно начала координат (точки (0;0)).

Произведение четной и нечетной функции

Произведение четной и нечетной функций есть нечетная функция.

Пусть \(f(x)\) — четная функция, а \(g(x)\) — нечетная. Тогда \(f(x)=f(-x), а g(-x)=-g(x).\)

Исследование функций в примерах

Доказать, что функция \(y=x^2\) четная.

1. Найдем область определения: \(D(y):x\in(-\infty;+\infty)\) — симметрична относительно 0.

Исследовать на четность и нечетность функцию \(f(x)=8x^3-7x.\)

1. Найдем область определения: \(D(f):x\in(-\infty;+\infty)\) — симметрична относительно 0.

Исследовать на четность и нечетность функции \(f_1(x)=\frac\) и \(f_2(x)=\frac4\)

Рассмотрим первую функцию:

1. Найдем область определения: x — любое число, кроме 1. Она не симметрична относительно 0, значит \( f_1(x)\) относится к функциям общего вида, то есть не является ни четной ни нечетной.

Рассмотрим вторую функцию:

Источник

Четность функции

Что означает четность функции

Что означает четность функции

Что означает четность функции

Что означает четность функции

Нечётная фу́нкция — функция, меняющая знак при изменении знака независимого переменного.

Чётная фу́нкция — это функция, не изменяющая своего значения при изменении знака независимого переменного.

Нечётная фу́нкция — функция, симметричная относительно центра координат, а чётная — функция, симметричная относительно оси ординат.

Содержание

Определения

Свойства

Примеры

Нечётные функции

Чётные функции

Вариации и обобщения

Полезное

Смотреть что такое «Четность функции» в других словарях:

Четность — Чётность в теории чисел способность целого числа делиться без остатка на 2. Чётность функции в математическом анализе определяет, изменяет ли функция знак при изменении знака аргумента: для чётной/нечётной функции. Чётность в квантовой механике… … Википедия

Четность (математика) — Чётность в теории чисел способность целого числа делиться без остатка на 2. Чётность функции в математическом анализе определяет, изменяет ли функция знак при изменении знака аргумента: для чётной/нечётной функции. Чётность в квантовой механике… … Википедия

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ — класс элементарных функций: синус, косинус, тангенс, котангенс, секанс, косеканс. Обозначаются соответственно: sin x,cos x, tg x,ctg x, sec x,cosec x. Тригонометрические функции действительного аргумента. Пусть А точка окружности с центром в… … Математическая энциклопедия

ВНУТРЕННЯЯ ЧЕТНОСТЬ — (Р), одна из хар к (квант. чисел) элем. ч цы, определяющая поведение её волновой функции y при пространственной инверсии (зеркальном отражении), т. е. при замене координат х® х, y® у, z® z. Если при таком отражении y не меняет знака, В. ч. ч цы… … Физическая энциклопедия

Зарядовая четность — Зарядовое сопряжение операция замены частицы на античастицу (напр., электрон на позитрон). Зарядовая чётность Зарядовая чётность квантовое число, определящее поведение волновой функции частицы при операции замены частицы на античастицу… … Википедия

Циклическая проверка на четность — Алгоритм вычисления контрольной суммы (англ. Cyclic redundancy code, CRC циклический избыточный код) способ цифровой идентификации некоторой последовательности данных, который заключается в вычислении контрольного значения её циклического… … Википедия

Источник

Четность и нечетность функции. Период функции. Экстремумы функции

Содержание

Способы задания функции

x−2−10123
y−4−3−2−101

Пользуясь данной таблицей, можно разобрать, что для значения аргумента −1 будет соответствовать значение функции −3 ; а значению x=2 будет соответствовать y=0 и т.д. Также важно знать, что каждому значению аргумента в таблице соответствует лишь одно значение функции.

Четная и нечетная функция

Функция является ни четной, ни нечетной и называется функцией общего вида, когда она не обладает симметрией относительно оси или начала координат.

Исследуем на четность нижеприведенную функцию:

Значит, функция f(x)=3x^<3>-7x^ <7>является нечетной.

Периодическая функция

Что означает четность функции

f(x) > 0 на (x_<1>; x_<2>) \cup (x_<3>; +\infty )

Что означает четность функции

f(x) на (-\infty; x_ <1>) \cup (x_<2>; x_ <3>)

Что означает четность функции

Ограниченность функции

Возрастающая и убывающая функция

Корнями функции принято называть точки, в которых функция F=y(x) пересекает ось абсцисс (они получаются в результате решения уравнения y(x)=0 ).

а) Если при x > 0 четная функция возрастает, то убывает она при x

Что означает четность функции

б) Когда при x > 0 четная функция убывает, то возрастает она при x

Что означает четность функции

в) Когда при x > 0 нечетная функция возрастает, то возрастает она и при x

Что означает четность функции

Что означает четность функции

Экстремумы функции

Необходимое условие

Достаточное условие

Наибольшее и наименьшее значение функции на промежутке

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *