Что отвечает за работу мышц

Как работают мышцы

Что отвечает за работу мышц

Что отвечает за работу мышц

Как работают мышцы

Когда человек двигается, он обычно и не подозревает, сколько в его организме происходит различных процессов. А ведь даже когда человек спит, мышцы работают: спящий дышит, бьется его сердце.

Когда человек двигается, он обычно и не подозревает, что в его организме происходит огромное количество механических и химических процессов. Тысячи реакций складываются в сокращение клеток мышечной ткани, и мы идем на работу или занимаемся чем-то более приятным. Собственно, даже когда человек спит, мышцы работают: спящий дышит, бьется его сердце.

Так за счет чего работают наши мышцы?

АТФ и АДФ

Главное, что нужно для работы мышц – энергия. Закон сохранения которой никто не отменял.

Единственный источник энергии, находящийся прямо в мышцах – это вещество с трудновыговариваемым названием аденозинтрифосфорная кислота. Для удобства непосвященных химики называют его тремя буквами – АТФ. При расщеплении АТФ выделяется довольно много энергии и образуется аденозиндифосфорная кислота. Или сокращенно – да, правильно, АДФ.

Еще три буквы

Но вот беда – запаса АТФ в мышцах хватает буквально на доли секунды. За запасом АТФ в мышцах следит еще специальное вещество, креатининфосфат. Его тоже называют тремя буквами: КрФ. Он восстанавливает АДФ до АТФ и позволяет некоторое время продержаться. Это анаэробный процесс, он протекает без участия кислорода.

Но и КрФ хватает ненадолго – всего на 5-6 секунд. Зато процесс подпитки мышц энергией при помощи КрФ самый эффективный и быстрый. И этих секунд хватает для стартового рывка, для начального движения, пока остальные процессы поставки энергии в мышцы не успели включиться. Чем больше мышечная масса – тем больше КрФ. Понятно, почему «качки» такие сильные – и почему так ненадолго.

Гликоген

Если же нам нужно поработать больше 5-6 секунд (понимаю, что обычно лень – но приходится), то включается следующая система. Она называется гликолитической. Ее суть в том, что в организме начинают расщепляться глюкоза и запасенный в основном в печени резервный углевод гликоген. То есть, углеводы.

Этот процесс тоже происходит без участия дыхания. Но и его хватает от силы минуты на три. Поэтому, если вы за кем-то гонитесь, постарайтесь его догнать за это время, иначе будет сложнее.

Аэробное окисление

Если уж приходится поработать больше трех минут (бывает в жизни и такое), то тогда нам придется дышать. Ибо продолжительную работу мышц обеспечивает процесс, называющийся окислительным фосфорилированием.

Он возможен только при достаточном снабжении мышц кислородом. В этом процессе расщепляются и углеводы, и жиры. Если работа у нас интенсивная и мощная, то сжигаются углеводы, а, если работа низкоинтенсивная и продолжительная, то сжигаются жиры.

Источник

Мышцы человека

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Что отвечает за работу мышц

Что отвечает за работу мышц

Мышцы тела человека можно поделить на:

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять. Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Что отвечает за работу мышц

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Источник

Что отвечает за работу мышц

Мышцы или мускулы (от лат. musculus — мышка, маленькая мышь) — органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Предназначены для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Что отвечает за работу мышцМышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Человек выполняет любые движения — от таких простейших, как моргание или улыбка, до тонких и энергичных, какие мы наблюдаем у ювелиров или спортсменов — благодаря способности мышечных тканей сокращаться. От исправной работы мышц, состоящих из трёх основных групп, зависит не только подвижность организма, но и функционирование всех физиологических процессов. А работой всех мышечных тканей управляет нервная система, которая обеспечивает их связь с головным и спинным мозгом и регулирует преобразование химической энергии в механическую.

В теле человека 640 мышц (в зависимости от метода подсчёта дифференцированных групп мышц их общее число определяют от 639 до 850). Самые маленькие прикреплены к мельчайшим косточкам, расположенным в ухе. Самые крупные — большие ягодичные мышцы, они приводят в движение ноги. Самые сильные мышцы — икроножные и жевательные, язык.

По форме мышцы очень разнообразны. Чаще всего встречаются веретенообразные мышцы, характерные для конечностей, и широкие мышцы — они образуют стенки туловища. Если у мышц общее сухожилие, а головок две или больше, то их называют двух-, трёх- или четырёхглавыми.

Видео YouTube

Мышцы и скелет определяют форму человеческого тела. Активный образ жизни, сбалансированное питание и занятие спортом способствуют развитию мышц и уменьшению объёма жировой ткани.

Мышцы и их функция

Мышечная ткань.

Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться. (Увеличить)

Стенки внутренних органов (сосудов, кишечника, мочевого пузыря) образованы гладкой мышечной тканью. Сокращение волокон этой ткани происходит медленно.

Строение мышцы.

Что отвечает за работу мышц

Роль нервной системы в регуляции деятельности мышц.

К скелетным мышцам подходят нервы, содержащие чувствительные и двигательные нейроны. По чувствительным нейронам передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему.

По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается. Таким образом, сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы.

Работа мышц.

Согласованная работа мышц сгибателей и разгибателей.

В выполнении человеком любого движения принимают участие две группы противоположно действующих мышц: сгибатели и разгибатели суставов.

Сгибание в суставе осуществляется при сокращении мышц-сгибателей и одновременном расслаблении мышц-разгибателей.
Согласованная деятельность мышц-сгибателей и мышц-разгибателей возможна благодаря чередованию процессов возбуждения и торможения в спинном мозге. Например, сокращение мышц-сгибателей руки вызвано возбуждением двигательных нейронов спинного мозга. Одновременно расслабляются мышцы-разгибатели. Это связано с торможением двигательных нейронов.

Мышцы-сгибатели и разгибатели сустава могут одновременно находиться в расслабленном состоянии. Так, мышцы свободно висящей вдоль тела руки находятся в состоянии расслабления. При удержании гири или гантели в горизонтально вытянутой руке наблюдается одновременное сокращение мышц-сгибателей и разгибателей сустава.

Сокращаясь, мышца действует на кость как на рычаг и производит механическую работу. Любое мышечное сокращение связано с расходом энергии. Источниками этой энергии служат распад и окисление органических веществ (углеводов, жиров, нуклеиновых кислот). Органические вещества в мышечных волокнах подвергаются химическим превращениям, в которых участвует кислород. В результате образуются продукты расщепления, главным образом углекислый газ и вода, и освобождается энергия. (Увеличить)

Протекающая через мышцы кровь постоянно снабжает их питательными веществами и кислородом и уносит из них углекислый газ и другие продукты распада.

Утомление при мышечной работе.

При длительной физической работе без отдыха постепенно уменьшается работоспособность мышц. Временное снижение работоспособности, наступающее по мере выполнения работы, называют утомлением. После отдыха работоспособность мышц восстанавливается.

При выполнении ритмических физических упражнений утомление наступает позднее, так как в промежутках между сокращениями работоспособность мышц частично восстанавливается.

В то же время при большом ритме сокращений скорее развивается утомление. Работоспособность мышц зависит и от величины нагрузки: чем больше нагрузка, тем скорее развивается утомление.

Утомление мышц и влияние на их работоспособность ритма сокращений и величины нагрузки изучал русский физиолог И.М. Сеченов. Он выяснил, что при выполнении физической работы очень важно подобрать средние величины ритма и нагрузки. При этом производительность будет высокой, а утомление наступает позже.

Видео YouTube

Источник

Что отвечает за работу мышц

Что отвечает за работу мышц

На протяжении многих лет изучение процессов синтеза белков в скелетных мышцах при выполнении различных физических нагрузок остаётся актуальной проблемой биохимии и физиологии. Мышцы и их силовые характеристики очень важная составляющая организма каждого спортсмена, которая позволяет достигать результатов. В связи с прогрессивным развитием спорта и вовлечением большого количества людей в физическую культуру, тема здоровья спортсменов становится все более актуальной, интересной и увлекательной. Учитывая существующую сильную корреляцию между площадью поперечного сечения мышц и мышечной силой, стремление увеличить мышечную массу тела есть у каждого человека, занимающегося спортом. Кроме этого, необходимо помнить, что преобладание мышечной массы в организме благоприятно влияет на метаболические процессы.

Скелетная мышца – одна из наиболее пластичных структур в организме млекопитающих. При повышенной активности и нагрузке часто происходит увеличение её размеров, объёмов миофибриллярного аппарата, повышение сократительных возможностей (силы, мощности). Процесс прироста мышечной массы зависит от различных факторов: наследственных, конституциональных, а также пола, возраста, метаболизма, гормонального фона. Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому важно понимать и активно использовать все возможные механизмы этого процесса.

Клетки поперечно-полосатой мускулатуры отличаются от гладкомышечных миоцитов. Клетки скелетных мышц образуют многоядерный синцитий, основное вещество которого формируют миофибриллы, состоящие из толстых и тонких миофиламентов. Первый тип образуют молекулярные единицы и миозин, а второй тип содержит тропомиозин с тропонином и F-актин. Многие авторы считают скелетную мускулатуру гетерогенной системой относительно устройства и выполняемых функций, несмотря на её строгую организацию. Данное свойство помогает мышцам соответствовать возлагаемой на них функции. Так путём изменения количества саркомеров и миофибрилл обеспечивается их функциональная реорганизация [1].

Работа мышц проявляется их сокращением, которое начинается с появления очага возбуждения на нейромышечных окончаниях. Наружная мембрана деполяризуется, открываются кальциевые каналы, и концентрация кальция внутри клетки возрастает. Ионы кальция связываются с тропонином, при этом конформируется тропониновый комплекс. Участки цепей миозина связываются с актином, что сопровождается высвобождением энергии вследствие расщепления АТФ до АДФ и остатка фосфорной кислоты. Угол между лёгкой и тяжёлой цепями миозина изменяется и актиновый филамент перемещается к центру саркомера, что приводит к изменению длины мышцы, её сокращению [1, 2].

Клетки скелетных мышц подразделяются на два типа:

А) Миосателлиты – взрослые стволовые клетки мышечной ткани. Представляют собой основу для обновления мышц и прироста их массы;

Б) Миосимпласты – формируют многоядерный синцитий. Сами по себе являются мышечными тубами с миофибриллами внутри, по периферии которых располагаются ядра.

Нагрузки, оказываемые на мышцы, и само мышечное сокращение имеют некую зависимость. Предполагается, что первое будет напрямую соответствовать второму. Это достигается за счёт усиления экспрессии генов сократительных белков и энзимов обменных процессов. Мышечная активность сопровождается количественными и качественными изменениями в миоцитах того типа, которые необходимы для наиболее эффективного осуществления выполняемой работы [2].

Мышечные волокна делятся на медленные (I тип) и быстрые (II тип). Оба этих типа имеют различный состав, включающий в себя сократительные белки, ферменты энергетического обмена и внутриклеточный кальций.

Увеличение силы мышц проявляется структурными перестройками, которые затрагивают нервную и мышечные системы. Изменения в нервной системе проявляются трансформацией величины кортикальных полей, которые регулируют выполнение определённого вида движения, влиянием на синхронизацию моторных единиц и на обучение определенных мышц, отвечающих за выполнение данного вида движений. Таким образом, наибольшая активность мышц наблюдается именно тогда, когда она необходима для достижения максимального эффекта (активность мышц агонистов при одновременной пассивности антагонистов). Также наблюдается изменение частоты и устойчивости генерируемых импульсов и порога возбудимости мотонейронов. Изменения в мышечной системе могут быть связаны с гипертрофией скелетных мышц (увеличение размеров мышечного волокна) и с их гиперплазией (увеличение количества миоцитов) [3].

Но прежде чем переходить к последним двум процессам, необходимо разобраться с изменениями, происходящими в самих мышцах. В момент выполнения работы миоцит подвергается действию физических и гуморальных факторов (пассивные механические силы, гипоксемия, факторы роста, и т.д.). Они являются причиной запуска путей передачи сигнала внутри клеток, опосредуя транскрипцию и трансляцию генов, ответственных за синтез белков [2]. Изменения данных путей сопровождаются реорганизацией мышечных волокон, точнее их типов.

Одним из основных исходных сигналов является повышенная концентрация кальция внутри клетки и кальцинейрина. Кальцинейрин дефосфорилирует факторы транскрипции – NFAT (nuclear factor of activated T-cells), которые находятся в фосфорилированном состоянии [4]. Данные факторы в дефосфорилированной форме активируют гены-мишени, что способствует перестроению быстрых волокон в медленные.

По мере приспособления мышц к нагрузкам изменяются и процессы метаболизма в них. Существуют различные параметры, влияющие на формирование адаптивных механизмов в миоцитах при выполнении работы. Важнейшим является гипоксия, которая, в свою очередь активирует ферментные системы (фумараза, цитратсинтаза, ЛДГ) и запускает работу факторов транскрипции (PGC1). При недостатке кислорода происходит активация одной изоформы семейства гипоксия-индуцированных факторов (HIF; hypoxia inducible factor), которая проникает в ядро, связывается с определенным участком ДНК и активирует гены, отвечающие за гликолиз, потребление кислорода и ангиогенез, увеличивая данные процессы. Некоторые гормоны также способны влиять на экспрессию генов в мышечных клетках. Это такие гормоны, как инсулин, гормон роста, которые вместе с кортизолом запускают катаболические реакции в условиях метаболического и энергетического истощения [3].

Стоит напомнить, что мышцы не являются постоянными клетками, а заменяются в течение жизни. Пролиферация необходима для предотвращения апоптоза клеток (регулируемый процесс клеточной гибели) и поддержания массы скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом. Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.

Что же наблюдается при гипертрофии и гиперплазии мышечного волокна? При растяжении и сокращении мышц происходит образование факторов роста IGF и MGF, которые могут действовать как паракринно, так и аутокринно. С одной стороны, их действие проявляется в увеличении синтеза сократительных белков мышечных волокон. Основным участником данного механизма является фосфорилированная PKB [5]. Её активация начинается с влияния на мышцу нагрузки, которая приводит к синтезу гена, запускающего путь IGF/PI3K. В ткани имеется несколько изоформ, некоторые из них (IGF-1 и MGF), взаимодействуя с рецепторами приводят к конформационным изменениям. Через фосфорилирование ряда рецепторов и происходит активация PKB, способствующая развитию анаболических реакций [6].

С другой же стороны, происходит усиление пролиферации миосателлитов, их митотическая активность приводит к формированию новых клеток, а также сопровождается слиянием их с имеющимися мышечными волокнами или даёт возможность формировать новые. Миосателлиты расположены между базальной мембраной и сарколеммой. Покоящиеся клетки активируются непосредственно травмированием мышцы и в ответ на это начинают активно делиться и соединяться с частями поврежденного волокна. Под влиянием тяжёлой изнурительной работы происходит также активация данных клеток из-за образования многочисленных микротравм мышечного волокна. Вследствие этого наблюдается явление подобное процессам, происходящим при воспалении. В зону повреждения активно мигрируют нейтрофилы и макрофаги, которые активируют синтез ранее упомянутых факторов роста, регулирующих пролиферацию и дифференцировку миосателлитов. Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста. Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.

В отечественной литературе не утихают споры о патогенетических аспектах мышечного роста. Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности. Но существует понятие о кратковременной гипертрофии скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить за счет собственной крови и осмотического давления, если использовать специальный метод тренировки – пампинг.

Неоспоримым является факт увеличения объёма мышечных волокон. Это так называемая миофибриллярная гипертрофия, при которой происходит изменение объёма миофибрилл и плотность их укладки. Механизм связан с увеличением количества саркомеров в миофибриллах. Значительная роль при этом отводится активированным клеткам-сателлитам. Миогенные стволовые клетки начинают пролифелировать, а затем сливаются с существующими клетками или взаимодействуют между собой для формирования новых мышечных волокон. Этот механизм актуален при восстановлении травмированных клеток и при спортивной гипертрофии.

Существует множество данных, доказывающих идущий параллельно с этим процесс увеличения объёма несократительной части мышцы – саркоплазматическая гипертрофия. Это тонкие перестройки на биохимическом уровне клетки, а так же увеличение количества митохондрий. Многие авторы считают, что трансформации в саркоплазме повышают выносливость мышц. Ряд исследователей утверждает, что увеличение различных неконтрактильных элементов и жидкости действительно может привести к приросту мышечной массы, но без сопутствующего увеличения силы. Саркоплазматическая гипертрофия достигается специальными тренировками и часто описывается как нефункциональная. Однако ряд специалистов предполагают, что отек мышечных волокон вызывает увеличение синтеза белка и таким образом способствует росту сократительной ткани.

Эти процессы редко бывают сбалансированными и зависят от характера и интенсивности нагрузки. В скелетных мышцах при этом синтез мышечных белков преобладает над их распадом. Причиной такого метаболизма сторонники гипотезы ацидоза считают накопление молочной кислоты. С точки зрения другой теории – временная гипоксия запускает реперфузию мышц и активирует деление клеток-сателлитов. Последнее время широкое распространение получила гипотеза механического повреждения мышечных волокон. Микроразрывы сократительных белков и повреждения саркоплазмы сопровождается увеличением концентрации ионов кальция, что и стимулирует пролиферацию сателлитов.

Из этого следует, что механизмы мышечной гипертрофии известны и неоспоримы. Очень дискутабельным остается вопрос о наличии процесса гиперплазии мышц. Большинство авторов сходится во мнении, что увеличение количества мышечных волокон у человека не доказано, но при этом описывается возможность получения гиперплазии мышц в экспериментальных условиях у животных (млекопитающих и птиц). Некоторые исследователи допускают частичное увеличения числа волокон. На основании проведенного мета-анализа экспериментальных работ отмечено, что количество мышечных элементов увеличилось в экспериментах на птицах значительнее, чем при использовании в качестве подопытных млекопитающих. Примечательно также, что эффект гиперплазии наблюдался там, где использовались постоянные растяжения, а не упражнения, сочетающие его с расслаблением. Ряд исследователей (Kraemer, William J. и MacDougall J.) утверждают, что этот механизм может осуществляться под влиянием силовых тренировок. Однако доказательств увеличения мышечных волокон у людей недостаточно. Длительных исследований (более года) добровольцев и спортсменов не проводилось. Высказывается мнение, что это слишком короткий период для этого процесса. Гиперплазия подтверждается в биопсийном материале, а погрешность этого метода составляет около 10 %, что делает результат очень сомнительным.

Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальных стимуляторов. Российские ученые подтверждают, что вклад гиперплазии в процесс увеличения объема мышц составляет не более 5 % и, как правило, потенцирован использованием анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.

Таким образом, при мышечной работе происходит множество процессов на разных уровнях. Начиная с изменений интенсивности обменных процессов и заканчивая изменениями механизмов нервной и гуморальной регуляции. Реорганизация мышц, лежащая в основе этих процессов, приводит к изменению многочисленных характеристик деятельности спортсменов.

Проанализировав все данные и изучив все возможные гипотезы, становится очевидным, что в увеличении мышечных волокон играют некую роль всё-таки два процесса. Первый – гипертрофия с ёе подвидами для сократительной и несократительной части мышцы (миофибриллярная и саркоплазматическая), которая, по мнению многих исследователей, занимает основополагающую роль. И второй это гиперплазия с её минимальным, но существенным вкладом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *