Что относят к органоидам клетки немембранного строения
Немембранные органоиды клетки
В числе клеточных органоидов (органелл) — специальных постоянных структур, выполняющих важнейшие функции, — есть немембранные органоиды, то есть не имеющие в своем строении мембран. Рассмотрим их подробно.
Опорно-двигательная система клетки
Сложный цитоскелет является опорно-двигательной системой клетки. Его составляют микрофиламенты, реснички и жгутики с базальными тельцами, клеточный центр, включающий микротрубочки и центриоли. Цитоскелет задает форму клетки, ее движение, деление и внутриклеточные перемещения.
1. Микрофиламенты, представляющие собой нити диаметром до 6 нм, состоят из актина и реже миозина. В присутствии АТФ они соединяются в длинные цепочки, могут изменять длину относительно друг друга, обеспечивая движение. Расположены микрофиламенты под клеточной мембраной, нередко присоединены к ее белкам (эритроциты), обеспечивая гибкость клеток.
2. Микроворсинки являются пучками микрофиламентов из актина, объединенных выростом цитоплазмы и покрытых плазматической мембраной.
3. Микротрубочки — тонкие нити из белка тубулина. Ориентируют перемещение органоидов в клетке, влияют на клеточную геометрию.
4. Реснички и жгутики имеют внутри стержень (аксонему), состоящий из особым образом организованных пучков микротрубочек. «Система 9+2» сообщает о том, в каком количестве микротрубочки находятся внутри жгутика и реснички: 9 дуплетов по периферии, 2 одиночные в центре. Реснички присутствуют в клетках яйцеводов, в носовой полости, в эпителии бронхов — синхронными движениями они продвигают мокроту по бронхам «к выходу», а яйцеклетку в сторону матки. Жгутики длиннее ресничек более чем в 10 раз, например, у сперматозоидов они достигают 100 мкм.
5. Базальные тельца являются как бы якорями для жгутиков и ресничек, укрепляя их в цитоплазме. Внутри базального тельца, на его периферии, находится «система 9» — совокупность триплетов, в самом же центре микротрубочек нет. Как это запомнить? Базальное тельце — важный центр, который держит реснички и жгутики, поэтому в нем «большие» триплеты, а не «маленькие» дуплеты. В центре ничего нет, так как на периферии добавлено по 1 трубочке, они как бы переместились, оставив пустоту.
6. Клеточный центр (центросома) представлен центриолями и микротрубочками, отходящими от них.
7. Центриоли расположены попарно, перпендикулярно друг другу. В них наблюдается тот же принцип строения, что и в базальных тельцах, — 9 триплетов. У высших растений центриолей нет. Делятся ли центриоли? Да, они делятся перед делением клетки (две центриоле превращаются в четыре). После удвоения центриолей из микротрубочек формируется веретено деления.
1. Представляют собой шарообразные структуры диаметром около 20 нм — то есть крайне мелкие!
2. В составе имеют рибосомные белки, молекулы рРНК.
3. Конструкция рибосомы сложная, молекулы в ее составе не повторяются дважды и занимают определенные места. При этом молекул более 50.
4. Имеют две субчастицы — большую и малую. У кишечной палочки (е. coli) две субчастицы названы 50S и 30S. В клетке эукариот рибосомы имеют субчастицы 60S и 40S — они содержат больше разных белков.
5. Субчастица 30S построена из 21 рибосомного белка и одной молекулы 16S рибосомной РНК. Субчастица 50S — из 34 молекул белка и двух молекул рибосомной РНК (23S и 5S).
6. Что такое S — коэффициент седиментации (к. с.)? Это скорость осаждения частицы в центрифуге, исчисляемая в единицах Сведберга. Зависит коэффициент седиментации от молекулярной массы и пространственной конформации частицы.
7. В чем особенности рибосом митохондрий и пластид? В них рибосомы больше похожи на 70S (бактериальные), чем на 80S (имеющиеся в цитоплазме эукариот).
В основном клеточные включения — это продукты клеточного метаболизма в цитоплазме. Они могут быть в виде гранул, капель и кристаллов.
1. Жиры. В виде капель — в цитоплазме ряда простейших, например, инфузорий, в клетках растений, в семенах. Жир накапливается при болезнях, например, жировом перерождении печени. У млекопитающих жир содержится в жировых клетках.
2. Полисахариды. Часто имеют вид капель. Прежде всего, гликоген запасается у животных (мышечные волокна, печень, нейроны). Растения (клубни картофеля, зерна злаков) накапливают гранулы крахмала, в которых много слоев, каждый из них имеет кристаллы.
3. Белки. Имеют вид гранул. Встречаются реже, чем другие включения (яйцеклетки, клетки печени, простейших).
4. Пигменты — например, родопсин в сетчатке глаза, черный пигмент меланин в коже животных, гемоглобин эритроцитов.
Биология в лицее
Site biology teachers lyceum № 2 Voronezh city, Russian Federation
Органоиды (греч. órganon — орган и éidos — вид), или органеллы (лат. organella — уменьшительное от греч. órganon ) — постоянные структуры эукариотических клеток.
Органоиды разделяют на немембранные (не имеющие мембран), одномембранные (окруженные одной мембраной) и двухмембранные (окруженные двумя мембранами).
Немембранные органоиды
Немембранные органоиды — это органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе микротрубочек — клеточный центр и органоиды движения (жгутики и реснички).
Рибосомы впервые были описаны как уплотненные частицы, или гранулы, американским цитологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин «рибосома» был предложен Ричардом Робертсом в 1958 году взамен множества различных названий, которые существовали для обозначения этих частиц (микросомы, микросомные частицы, микросомные рибонуклеопротеидные частицы, гранулы Паладе). В составе рибосомы различают большую и малую субъединицы, которые синтезируются в ядрышке из рибосомальных белков и рРНК и поступают в цитоплазму, где и формируют рибосому.
Полирибосомы, или полисомы, — находящиеся в живых клетках и синтезирующие белок комплексы, каждый из которых состоит из молекулы иРНК и нескольких связанных с ней рибосом.
Полисомы образуются при последовательном присоединении рибосом к иРНК. Двигаясь по иРНК, рибосомы «считывают» информацию, заложенную в одной и той же молекуле иРНК. При этом каждая рибосома синтезирует одну полипептидную цепь согласно нуклеотидной последовательности иРНК.
Синтез белка в клетке осуществляется преимущественно полисомами, а не одиночными рибосомами.
Основная функция рибосом — синтез белка.
Рибосомы эукариотических клеток крупнее, чем рибосомы прокариот. Синтез рРНК и рибосомных белков у эукариот происходит в специальной внутриядерной структуре — ядрышке. Сборка субъединиц в единую рибосому осуществляется в цитоплазме.
Рибосомы эукариот и прокариот
Характерные особенности | Рибосомы эукариотического типа | |
---|---|---|
Диаметр | 8 нм | 23 нм |
Молекулярная масса | 2,5 х 10 6 | 4,2 х 10 6 |
Соотношение РНК и белка | 3: 2 | 1:1 |
Состав большой субъединицы | 2 молекулы рРНК и 34 молекулы белка | 3 молекулы рРНК и 49 молекул белка |
Состав малой субъединицы | 1 молекула рРНК и 21 молекула белка | 1 молекула рРНК и 33 молекулы белка |
Скорость осаждения в ультрацентрифуге | 70 S | 80 S |
Примерное количество в клетке | 10 4 | 10 5 |
Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится, например, веретено деления, а к постоянным — реснички, жгутики и центриоли клеточного центра.
Микротрубочки образуют внутренний каркас клетки ( цитоскелет ), участвуют в поддержании формы клетки и расположения органоидов в цитоплазме, входят в состав ресничек и жгутиков, используются в качестве «рельсов» для транспортировки частиц и т. д. Из микротрубочек состоят также центриоли и веретено деления, микротрубочки участвуют в митотическом и мейотическом расхождении хромосом.
Микротрубочки полярны: на одном конце может происходить самосборка микротрубочки, на другом — разборка. Сборка и разборка микротрубочек связана с затратами энергии.
Микротрубочки являются динамическими структурами, в клетке они постоянно строятся и разбираются. Такая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.
Клеточный центр — немембранный органоид, постоянная структура животных клеток. Отсутствует в клетках растений.
Веретено деления — структура, возникающая в клетках эукариотических организмов в процессе деления ядра.
Веретено деления: микротрубочки прикрепляются к центромерам хромосом
Веретено деления состоит из микротрубочек. Часть микротрубочек идет от центриолей к хромосомам, другие микротрубочки заканчиваются свободно в цитоплазме. Веретено деления обеспечивает согласованное расхождение хромосом к полюсам клетки.
После деления клетки каждая из вновь образовавшихся клеток получает пару центриолей: перед началом деления клетки происходит удвоение центриолей (от каждой центриоли отпочковывается новая центриоль) и центриоли расходятся к полюсам.
Электронная микрофотография клеточного центра: видны две центриоли, перпендикулярно ориентированные друг к другу
В результате образуются два клеточных центра — по одному на каждую вновь образовавшуюся клетку, при этом каждый клеточный центр состоит из двух центриолей.
В животных клетках две центриоли образуют клеточный центр. Эти структуры, расположенные под прямым углом друг к другу, обычно находятся вблизи ядра. В ходе митоза они расходятся к разным концам клетки, формируя веретено деления. После деления каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.
В клетках растений центриолей нет, и митотическое веретено образуется там при их отсутствии.
Органоиды движения — реснички и жгутики. Это выросты мембраны диаметром около 0,25 мкм, содержащие внутри микротрубочки. Такие органоиды имеются у многих клеток: у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например в дыхательном эпителии.
Реснички — многочисленные цитоплазмические выросты на поверхности мембраны. Жгутики — единичные цитоплазматические выросты на поверхности клетки.
Органоиды клетки
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.
Клеточная стенка
Цитоплазма
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Немембранные органоиды
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.
Двумембранные органоиды
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Двумембранные и одномембранные органоиды: общие особенности и основные функции
Двумембранные и одномембранные органоиды
Общие особенности органоид
Что такое органоиды?
Органоиды — это функциональные части клетки с определенным строением и функциями.
Основа правильного функционирования клетки как элементарной единицы живого организма — наличие органелл. Их отличительная особенность заключается в постоянстве: по мере развития клетки они не исчезают.
Есть несколько типов клеточных органоидов. Классификация органоидов выглядит так:
Для жизни важны первые два типа органоидов растительной клетки, так как именно они поддерживают функционирование клетки и организма в целом.
Двумембранные органоиды клетки — это:
Двумембранные органеллы являются полуавтомномными органоидами. Полуавтономные органоиды — структуры, которые отвечают за поддержание самостоятельности клетки. Это значит, что у этих органоид есть способность делиться. Образование новых митохондрий и пластид происходит в результате деления уже существующих элементов клетки. У этих мембранных органоидов есть собственный геном. Он имеет форму кольца и в отдельных моментах похож на геном бактериальных клеток. Кодирование другой части происходит в ядре. Эта часть поступает из цитоплазмы, чем объясняется невозможность свободного существования митохондрий и пластид вне клетки.
Эти органеллы растительной клетки также обладают собственным аппаратом синтеза белка, то есть рибосомами. Они довольно мелкие, в отличие от тех, что есть в цитоплазме, и имеют сходства с рибосомами прокариот.
Все это дало повод считать, что эти мембранные органоиды клетки (полуавтономные органоиды) ранее были прокариотами. Предполагают, что такие органоиды вступили с древними эукариотическими клетками в симбиотические отношения и поселились внутри них на постоянной основе.
Что касается внешней мембраны двухмембранных органоидов клетки, это мембрана, которая составом схожа с мембраной эукариот. Это подтверждает гипотезу, что внешняя мембрана органойда представляет собой бывшую мембрану пищеварительной вакуоли (фагосомы), в которой оказался прокариотический симбионт. В таком случае внутренняя оболочка — это его собственная мембрана.
Теперь перейдем к одномембранным органоидам клетки. К таким мембранным органеллам относят:
Клеточная система также включает немембранные органоиды клетки. К ним относят:
Основные функции мембранных и немембранных органоидов
Общее свойство всех мембранных органелл — образование из биологических мембран. Важно отметить существенное отличие органоидов животной клетки и их функций от органоидов растительной клетки. В частности, растительная клетка характеризуется процессом фотосинтеза.
В растительных и животных клетках бесперебойная работа органелл обеспечивается только в том случае, если обеспечивается бесперебойная работа отдельных органоидов.
Остановимся подробнее на функциях различных органоидов и частей клетки.
В растительной клетке в состав клеточной стенки входят пектины и целлюлоза. Функция органоида растительной клетки — защита клетки от неблагоприятного внешнего воздействия и обеспечения транспорта веществ в клетку через мембрану.
Ядро содержит специальные углубления и поры, а еще — две мембраны.
Ядро — это двумембранный органоид и основное хранилище наследственной информации клетки, который позволяет ее передавать в ходе деления клетки.
В ядре как в двумембарнном органоиде заключается комплексная генетическая информация, реализуемая в процессе деления клетки.
Ядро состоит из ядрышка, хроматин, кариоплазмы.
Также важная составляющая одномембранных и двумембранных органоидов — вакуоль. Вакуоль представляет собой слияние участков эндоплазматической сети. Их назначение — регулировать выделение и поступление разнообразных веществ в клетку.
Что касается эндоплазматического ретикулума, то это система каналов гладкого и шероховатого типа. Функция эндоплазматической сети — синтез и транспорт веществ внутрь клетки.
Рибосомы — основные органеллы, которые служат основной для синтеза белка.
Основной строительный материл клетки — белок. По этой причине он может самостоятельно синтезироваться даже в клетках прокариот.
Постоянный клеточный органоид — цитоплазма. Это полужидкая субстанция с целым набором органоидов. Благодаря ей обеспечивается взаимодействие между ядром и остальными частями клетки.
Клеточная мембрана образуется при помощи белка и двойного слоя липидов. Растения имеют снаружи дополнительный слой клетчатки. Мембрана характеризуется избирательной проницаемостью. Ее электронейтральность поддерживается при помощи нагнетания в клетку ионов.
Лизосомы — это одномембранные органоиды, осуществляющие реакцию «внутриклеточного пищеварения».
В лизосомах есть внутренние ферменты, благодаря которым расщепляются остатки обмена веществ, несущие токсический эффект для клеточных структур.
Говоря о митохондриях, стоит отметить, что они являются энергетическими станциями клетки. Основное клеточное окисление и накаливание энергии в виде молекул АТФ происходит именно в них. Очень часто возникает вопрос, какие органоиды клетки содержат собственную ДНК. У митохондрий, к примеру, есть собственная ДНК, а также складки внутренней мембраны (также их называют «крестами»).
Пластиды — двумембранные органоиды. Они характерны только для растительных клеток. Они отличаются тем, что имеют собственную ДНК и реализуют процесс фотосинтеза. Пластиды содержат пигмент хлорофилл: когда он «заряжается» энергией, то запускает процесс образования кислорода и различных органических веществ.
Содержащие зеленый пигмент хлорофилл пластиды называются хлоропластами (двумембранные). Лейкопласты или бесцветные пластиды отличаются тем, что накапливают крахмал, а хромопласты отвечают за накапливание каратиноидов.
Такой органоид как клеточный центр (на рисунке ниже) включает в себя центриоли и микротрубочки. Он принимает участие в образовании цитоскелета и обуславливает систему деления клетки.
В клетке происходит формирование различных органоидов движения, таких как реснички и жгутики. Эти органоиды движения (на рисунке) состоят из белков и встречаются одинаково часто.
Из всего описанного выше можно сделать вывод, что органеллы клетки — это составные ее части. Поэтому вопрос их происхождения можно рассматривать по-разному. Присутствие органоидов свидетельствует о целостности клетки и единстве органического мира.
Какие из перечисленных органоидов являются мембранными?
Это общая характеристика двумембранных и одномембранных органоидов. Также из информации легко понять, какие из перечисленных органоидов являются мембранными.
Вместо того чтобы перечислять одномембранные органоиды клетки и двумембранные, проще всего обратиться к таблице органоидов эукариотической клетки.
Таблица органоидов. Двумембранные органоиды и одномембранные в сравнительной таблице.
Теперь вам не составит труда самостоятельно перечислить одномембранные органоиды клетки и выбрать структуры, характерные только для растительной клетки.