Что относится к звукопроводящему аппарату
Строение, функции и особенности органа слуха человека
Полезные статьи и актуальная информация от специалистов по слуху «Аудионика»
Ухо человека – сложный орган, который помогает поддерживать связь с внешним миром и дает человеку информацию о его расположении и перемещении в пространстве. Оно состоит из трех отделов: наружного, среднего и внутреннего. Уникальное строение органа слуха обеспечивает: прием, передачу звука и преобразование энергии колебания в нервный импульс.
Строение органа слуха
Звуки окружают человека с самого рождения. Выделяются 3 отдела органа слуха:
Наружное ухо – видимая часть органа. Оно представлено ушной раковиной и наружным слуховым проходом. Раковина – хрящ воронковидной формы, покрытый кожей. На ее поверхности находятся разные образования: ямки, завитки, возвышенности. Они помогают улучшать качество звука, делают его более громким и направляют в слуховой проход.
К раковине присоединяются волокна ушных мышц. В процессе эволюции человек утратил возможность «шевелить ушами», чтобы точнее локализовать звуки, эти мышцы работают у редких «счастливчиков». Кожный покров раковины имеет сальные и потовые железы.
Описывая строение органа слуха, анатомы указывают, что наружная часть канала имеет хрящевые стенки, а контактирующая со средним ухом – костные. Структуры среднего и внутреннего уха располагаются в теле височной кости.
Среднее ухо представлено полостью, объем которой составляет чуть более 1 кубического сантиметра. В ней расположены три маленькие слуховые косточки, которые соединены между собой в цепочку:
Они названы так по своему сходству с предметами обихода. Стремечко соединяется с окном преддверия. Среднее ухо также связано с носоглоткой посредством евстахиевой трубы.
Внутреннее ухо – самое причудливое образование органа слуха человека. Оно состоит из:
Что такое орган слуха и равновесия
Ухо человека отвечает не только за восприятие и дальнейшую передачу звуковой информации. Внутреннее ухо относится к органу слуха и равновесия. Это сложное образование, в котором волна механических колебаний, как морской прибой, распространяется в лимфатической жидкости и колышет отростки нервных клеток, формируя электрический импульс. Этот сигнал несет информацию о громкости, продолжительности, высоте звука в мозг.
Другая часть внутреннего уха – орган равновесия (вестибулярный аппарат). Он состоит из: преддверия, находящихся в нем трех полукружных каналов, маточки и мешочка. Преддверие – полость округлой формы с диаметром около 5 мм. Оно находится между каналами и улиткой. Каналы взаимно перпендикулярны и в месте соединения с преддверием имеют расширения – ампулы. Каналы заполнены эндолимфатической жидкостью.
Маточка и мешочек – поля нервных клеток, которые воспринимают различные раздражения. Смена положения тела регистрируется рецепторами маточки и вызывает рефлекторную реакцию мышц, помогая человеку сохранять равновесие. Вибрация улавливается окончаниями мешочка.
От органа в головной мозг идет преддверно-улитковый нерв.
Функции органа слуха
Говоря о функциях органа слуха, физиологи описывают их в соответствии с анатомическими образованиями. Так для каждого отдела есть свои специфические задачи:
Функции слуха эволюционно тесно связаны с оповещением об опасности и коммуникациями в сообществе. Чтобы надолго сохранить способность слышать долго, необходимо соблюдать простые правила профилактики снижения слуха.
Особенности органа слуха
Органы слуха у человека парные. Что это означает? Человек может слушать одновременно правым и левым ухом. Бинауральный слух дает больше информации о звуке и усиливает его при определенных условиях.
Если источник механических колебаний находится на одинаковом расстоянии от правого и левого уха, громкость сигнала увеличивается на 50%. Значит, при одностороннем нарушении компенсация с помощью слухового аппарата даже небольшой мощности существенно улучшает качество жизни.
Это помогает избегать опасности (например, приближающегося автомобиля) и выделять полезные звуки из всего фонового шума, беседуя с одним человеком в шумном помещении.
При возникновении любых проблем со слухом, необходимо срочно пройти диагностику слуха на профессиональном оборудовании. Если обратиться за помощью вовремя, то появляется шанс на полное восстановление слуха.
Удивительные возможности слуха человека
Особые возможности связаны с адаптацией органа слуха и коркового отдела анализатора при травме, одновременном воздействии нескольких звуковых волн способностью «достраивать» разговор на основе имеющегося опыта.
Развитие височных областей коры мозга происходит постепенно в ответ на сигналы извне. Физиология органа слуха такова, что при повреждении коркового отдела анализатора окружающие нейроны могут взять на себя «обязанности» погибших клеток. Это явление носит название нейропластичность. Ее запас особенно велик у детей в раннем возрасте, что говорит о важности слуховой стимуляции для развития мозга и слуха.
Взрослые люди не обладают такой способностью, но опыт общения позволяет им восполнять информацию, которая теряется при разговоре – например, при плохой телефонной связи, беседе в шуме. Это достигается за счет усиленной работы нейронов височных областей и приводит к быстрому утомлению.
А как реагирует ухо на очень громкие звуки? Доказано, что после воздействия таких сигналов у человека развивается временное снижение слуховой чувствительности. Это так называемое постстимульное утомление. Для полного восстановления требуется до 16 часов. Такой механизм должен защищать орган слуха от повреждения, но люди, долго слушающие громкую музыку, непроизвольно «делают погромче» и вредят здоровью.
Звуки-фантомы – еще один феномен, описывающий работу органа слуха. Порой человек «слышит» низкие звуки, хотя в действительности их нет. Особенность колебаний мембраны улитки приводит к «появлению» звуков низкой частоты, в то время как источника сигнала отсутствует. Такие колебания, особенно громкие, обладают интересной способностью маскировать звуки высокой частоты до их полного исчезновения.
Органы слуха – сложные и хрупкие образования. Внимательное отношение к их состоянию позволит сохранить здоровье и предотвратить развитие ряда тяжелых заболеваний.
Орлова Наталья Михайловна
Более 7000 подобранных и настроенных аппаратов. Участник Международного семинара аудиологов в Дании.
Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха
Ухо человека имеет сложное устройство. Звуковые волны попадают в ухо, которое направляет их к окончаниям чувствительных нервов. Ухо млекопитающих состоит из трех основных частей: наружного уха, среднего уха, внутреннего уха. Наружное и среднее уши наполнены воздухом. Их основным назначением, является проведение звука во внутреннее ухо. Аппарат слуха содержит звукопроводящую и звуковоспринимающую системы (см. рис. 6.). Состоит из ушной раковины, наружного слухового прохода, оканчивающегося барабанной перепонкой, с которой связаны три сочлененных слуховых косточки: молоточек, наковальня и стремечко, расположенные в полости, называемой средним ухом. Эта полость граничит с полостью внутреннего уха, с которой сообщается двумя отверстиями, затянутыми упругими мембранами: овальным и круглым окнами. К мембране, закрывающей овальное окно, плоским основанием прикреплено стремечко.
| |
У человека барабанная перепонка имеет овальную форму площадью около 66 мм 2 и толщиной около 0,1 мм. Эта перепонка передает колебания молекул воздуха в наружном ухе маленьким косточкам среднего уха. У человека движения перепонки похожи на работу поршня.
Так как среднее ухо наполнено воздухом, то любое различие в давлении по обеим сторонам барабанной перепонки ведет к смещению мембраны. Малые различия в давлении на частотах, на которые отвечает улитка, вызывают колебания барабанной перепонки во время нормального восприятия звуков. Наоборот, большие медленные изменения давления, вызванные атмосферными изменениями или поднятием на большие высоты, могут исказить форму и положение барабанной перепонки. Чтобы избежать этого искажения необходима связь между средним ухом и окружающим воздухом, но эта связь не должна передавать изменения, совершающиеся за время меньше 0,1 сек. Таким условиям удовлетворяют маленькие узкие трубки, такая трубка связывает среднее ухо с глоткой и называется евстахиевой трубой.
При чрезмерном внешнем давлении нежные стенки евстахиевой трубы легко спадаются. Это вызывает очень неприятное ощущение, часто испытываемое человеком в самолете. Против этого существуют такие методы как глотательное движение, жевание резинки или попытка надуться, плотно закрыв нос и рот. Это открывает евстахиеву трубу и позволяет уравнивать давление вне и внутри среднего уха.
Наружное и внутреннее ухо совместно обеспечивают максимальное усиление звука, примерно до 35 дБ. С их помощью слышимость звуков, передаваемых по костям, уменьшается и человек становится менее чувствительным к собственному голосу нежели к звукам воспринимаемым извне. Кроме того, они выполняют роль автоматического регулятора громкости.
Внутреннее ухо состоит из нескольких частей, они заполнены жидкостями двух сортов и связаны с восьмой парой черепномозговых нервов. Для слуха важна только улитковая часть внутреннего уха.
На основной мембране расположен кортиев орган (см. рис. 6, блок II). Этот орган содержит нервные окончания. В состав кортиева органа входят наружные и внутренние волосковые клетки (25000). Основания клеток фиксированы на основной мембране, концы волосков – на вестибулярной мембране. При колебаниях вестибулярной мембраны волосковые клетки перемещаются, и волоски (стрептоцилии) изгибаются. Считается, что изгиб волосков приводит к деполяризации мембраны, вызывающей изменение состояния многочисленных ионных каналов мембраны. Таким образом, давление и напряжение, передаваемые на волосковые клетки, вызывают активность в соединяющихся с ними нервных волокнах, генерируя электрические импульсы, которые распространяются по слуховому нерву. Поэтому кортиев орган является нейромеханическим преобразователем (т.е. механизмом, преобразующим одну форму энергии в другую). Микроскопия кортиева органа показывает, что волокна основной мембраны имеет разную длину в разных участках завитков улитки. Благодаря явлению резонанса высоко- и низкочастотные колебания вызывают раздражения разных волосковых клеток и, следовательно, воспринимаются разными участками улитки (см. рис. 6).
Физиология звукопроводящей системы
Анатомическими элементами звукопроводящей системы являются ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мышцы барабанной полости, структуры преддверия и улитки (перилимфа, эндолимфа, рейснерова, покровная и базилярная мембраны, волоски чувствительных клеток, вторичная барабанная перепонка (мембрана окна улитки). На рис. 1 представлена общая схема системы звукопроведения.
Рис. 1. Общая схема системы звукопроведения. Стрелками показано направление звуковой волны: 1 — наружный слуховой проход; 2 — надбарабанное пространство; 3 — наковальня; 4 — стремя; 5 — головка молоточка; 6, 10 — лестница преддверия; 7, 9 — улитковый проток; 8 — улитковая часть преддверно-улиткового нерва; 11 — барабанная лестница; 12 — слуховая труба; 13 — окно улитки, прикрытое вторичной барабанной перепонкой; 14 — окно преддверия, с подножной пластинкой стремени
Каждому из этих элементов свойственны специфические функции, которые в совокупности обеспечивают процесс первичной обработки звукового сигнала — от его «поглощения» барабанной перепонкой до разложения на частоты структурами улитки и подготовки его к рецепции. Изъятие из процесса звукопроведения любого из этих элементов или повреждение какого-либо из них приводит к нарушению передачи звуковой энергии, проявляющемуся явлением кондуктивной тугоухости.
Ушная раковина человека сохранила в редуцированном виде некоторые полезные акустические функции. Так, интенсивность звука на уровне наружного отверстия слухового прохода на 3-5 дБ выше, чем в свободном звуковом поле. Определенную роль ушные раковины играют в реализации функции ототопики ибинаурального слуха. Ушные раковины играют также и защитную роль. Благодаря особой конфигурации и рельефу при обдувании их воздушным потоком образуются разбегающиеся вихревые потоки, препятствующие попаданию в слуховой проход воздуха и пылевых частиц.
Функциональное значение наружного слухового прохода следует рассматривать в двух аспектах — клинико-физиологическом и физиолого-акустическом. Первый определяется тем, что в коже перепончатой части наружного слухового прохода имеются волосяные луковицы, сальные и потовые железы, а также специальные железы, вырабатывающие ушную серу. Указанные образования играют трофическую и защитную роль, препятствуя проникновению в наружный слуховой проход инородных тел, насекомых, пылевых частиц. Ушная сера, как правило, выделяется в небольших количествах и является естественной смазкой для стенок наружного слухового прохода. Будучи в «свежем» состоянии липкой, она способствует прилипанию к стенкам перепончато-хрящевой части наружного слухового прохода пылевых частиц. Высыхая, она во время акта жевания фрагментируется под влиянием движений в височно-нижнечелюстном суставе и вместе со слущивающимися частицами рогового слоя кожного покрова и прилипшими к ней посторонними включениями выделяется наружу. Ушная сера обладает бактерицидным свойством, в результате чего на коже наружного слухового прохода и барабанной перепонке не обнаруживается микроорганизмов. Длина и изогнутость наружного слухового прохода способствуют защите барабанной перепонки от прямого повреждения инородным телом.
Функциональный (физиолого-акустический) аспект характеризуется ролью, которую играет наружный слуховой проход в проведении звука к барабанной перепонке. На этот процесс влияет не диаметр имеющегося или возникающего в результате патологического процесса сужения слухового прохода, а протяженность этого сужения. Так, при длинных узких рубцовых стриктурах потеря слуха на разных частотах может достигать 10-15 дБ.
Барабанная перепонка является приемником-резонатором звуковых колебаний, обладающим, как уже было отмечено выше, свойством резонировать в широком диапазоне частот без существенных энергетических потерь. Колебания барабанной перепонки передаются рукоятке молоточка, далее — наковальне и стремени. Колебания подножной пластинки стремени передаются перилимфе вестибулярной лестницы, что вызывает колебания основной и покровной мембран улитки. Их колебания передаются волосковому аппарату слуховых рецепторных клеток, в которых происходит трансформация механической энергии в нервные импульсы. Колебания перилимфы в вестибулярной лестнице передаются через вершину улитки к перилимфе барабанной лестницы и далее приводят в колебание вторичную барабанную перепонку окна улитки, подвижность которой обеспечивает протекание колебательного процесса в улитке и защищает рецепторные клетки от чрезмерного механического воздействия при громких звуках.
Слуховые косточки объединены в сложную рычажную систему, обеспечивающую повышение силы звуковых колебаний, необходимое для преодоления инерции покоя перилимфы и эндолимфы улитки и силы трения перилимфы в протоках улитки. Роль слуховых косточек заключается также и в том, что они путем непосредственной передачи жидким средам улитки энергии звука предотвращают отражение звуковой волны от перилимфы в области вестибулярного окна.
Подвижность слуховых косточек обеспечивается тремя суставами, два из которых (наковальне-молоточковый и наковальне-стременной) устроены типичным образом. Третье сочленение (подножная пластинка стремени в окне преддверия) — это лишь сустав по функции, на самом деле это сложно устроенная «заслонка», выполняющая двоякую роль: а) обеспечение подвижности стремени, необходимой для передачи звуковой энергии структурам улитки; б) герметизация ушного лабиринта в области вестибулярного (овального) окна. Элементом, обеспечивающим эти функции, является кольцеваясоединительнотканная связка.
Мышцы барабанной полости (мышца, натягивающая барабанную перепонку, и стременная мышца) выполняют двойную функцию — защитную в отношении сильных звуков и адаптационную при необходимости адаптации звукопроводящей системы к слабым звукам. Они иннервируются двигательными и симпатическими нервами, что при некоторых заболеваниях (миастения, рассеянный склероз, различного рода вегетативные нарушения) нередко отражается на состоянии этих мышц и может проявляться не всегда идентифицируемыми нарушениями слуха.
Известно, что мышцы барабанной полости рефлекторно сокращаются в ответ на звуковое раздражение. Этот рефлекс исходит из рецепторов улитки. Если воздействовать звуком на одно ухо, то в другом ухе возникает содружественное сокращение мышц барабанной полости. Эта реакция получила названиеакустического рефлекса и используется в некоторых методиках исследования слуха.
Различают три вида звукопроведения: воздушный, тканевый и тубарный (т. е. посредством слуховой трубы). Воздушный тип — это естественное звукопроведение, обусловленное поступлением звука к волосковым клеткам спирального органа из воздушной среды посредством ушной раковины, барабанной перепонки и всей остальной системы звукопроведения. Тканевое, или костное, звукопроведениереализуется в результате проникновения звуковой энергии к подвижным звукопроводящим элементам улитки через ткани головы. Примером реализации костного звукопроведения может служить методика камертонального исследования слуха, при которой рукоятка звучащего камертона прижимается к сосцевидному отростку, темени или другой части головы.
Различают компрессионный и инерционный механизм тканевого звукопроведения. При компрессионном типе возникает сжатие и разряжение жидких сред улитки, что вызывает раздражение волосковых клеток. При инерционном типе элементы звукопроводящей системы, благодаря силам инерции, развиваемым их массой, отстают в своих колебаниях от остальных тканей черепа, в результате чего возникают колебательные движения в жидких средах улитки.
К функциям внутриулиткового звукопроведения относится не только дальнейшая передача звуковой энергии к волосковым клеткам, но и первичный спектральный анализ звуковых частот, и распределение их по соответствующим сенсорным элементам, находящимся на базилярной мембране. При этом распределении соблюдается своеобразный акустико-топический принцип «кабельной» передачи нервного сигнала к высшим слуховым центрам, позволяющий осуществлять высший анализ и синтез информации, содержащейся в звуковых сообщениях.
Слуховая рецепция
Под слуховой рецепцией понимают трансформацию механической энергии звуковых колебаний в электрофизиологические нервные импульсы, являющиеся закодированным выражением адекватного раздражителя звукового анализатора. Рецепторы спирального органа и другие элементы улитки служат генератором биотоков, именуемых улитковыми потенциалами. Существует несколько типов этих потенциалов: токи покоя, токи действия, микрофонный потенциал, суммационный потенциал.
Токи покоя регистрируются в отсутствие звукового сигнала и делятся на внутриклеточный иэндолимфатический потенциалы. Внутриклеточный потенциал регистрируется в нервных волокнах, в волосковых и опорных клетках, в структурах базилярной и рейснеровой (ретикулярной) мембран. Эндолимфатический потенциал регистрируется в эндолимфе улиткового протока.
Токи действия — это интерферированные пики биоэлектрических импульсов, генерируемые только волокнами слухового нерва в ответ на звуковое воздействие. Информация, содержащаяся в токах действия, находится в прямой пространственной зависимости от места раздражаемых на основной мембране нейронов (теории слуха Гельмгольца, Бекеши, Дэвиса и др.). Волокна слухового нерва группируются по каналам, т. е. по признаку их частотной пропускной способности. Каждый канал способен передавать только сигнал определенной частоты; таким образом, если в данный момент на улитку действуют низкие звуки, то в процессе передачи информации участвуют только «низкочастотные» волокна, а высокочастотные в это время находятся в состоянии покоя, т. е. в них регистрируется только спонтанная активность. При раздражении улитки длительным однотонным звуком частота разрядов в отдельных волокнах уменьшается, что связано с феноменом адаптации или утомлением.
Микрофонный эффект улитки является результатом ответа на звуковое воздействие только наружных волосковых клеток. Действие ототоксических веществ и гипоксия приводят к угнетению или исчезновению микрофонного эффекта улитки. Однако в метаболизме этих клеток присутствует и анаэробный компонент, поскольку микрофонный эффект сохраняется на протяжении нескольких часов после смерти животного.
Суммационный потенциал обязан своим происхождением реакции на звук внутренних волосковых клеток. При нормальном гомеостатическом состоянии улитки суммационный потенциал, регистрируемый в улитковом протоке, сохраняет оптимальный отрицательный знак, однако незначительная гипоксия, действие хинина, стрептомицина и ряда других факторов, нарушающих гомеостаз внутренних сред улитки, нарушают соотношение величин и знаков улитковых потенциалов, при котором суммационный потенциал становится положительным.
Отоакустическая эмиссия. Рецепторные клетки спирального органа помимо своей основной функции обладают еще одним удивительным свойством. В покое или при действии звука они приходят в состояние высокочастотной вибрации, в результате чего образуется кинетическая энергия, распространяющаяся как волновой процесс через ткани внутреннего и среднего уха и поглощающаяся барабанной перепонкой. Последняя под влиянием этой энергии начинает излучать наподобие диффузора громкоговорителя очень слабый звук в полосе 500-4000 Гц. Отоакустическая эмиссия является не процессом синаптического (нервного) происхождения, а результатом механических колебаний волосковых клеток спирального органа.
Адаптация — это биологический механизм, при помощи которого организм или отдельные его системы приспосабливаются к энергетическому уровню действующих на них внешних или внутренних раздражителей для адекватного функционирования в процессе своей жизнедеятельности. Процесс адаптации органа слуха может реализовываться в двух направлениях: повышение чувствительности при слабых звуках или их отсутствии и понижение чувствительности при чрезмерно сильных звуках. Повышение чувствительности органа слуха в тишине называют физиологической адаптацией. Восстановление чувствительности после ее снижения, возникающего под влиянием длительно действующего шума, называют обратной адаптацией. Время, в течение которого чувствительность органа слуха возвращается к исходному, более высокому уровню, называют временем обратной адаптации (BOA).