Что относится к молекулярному уровню в биологии
Что относится к молекулярному уровню в биологии
Молекулярный уровень: общая характеристика
1. Что такое химический элемент?
2. Что называется атомом и молекулой?
3. Какие органические вещества вам известны?
Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул.
Молекулярный уровень можно назвать начальным, наиболее глубинным уровнем организации живого. Каждый живой организм состоит из молекул органических веществ — белков, нуклеиновых кислот, углеводов, жиров (липидов), находящихся в клетках и получивших название биологических молекул.
Биологи исследуют роль этих важнейших биологических соединений в росте и развитии организмов, хранении и передаче наследственной информации, обмене веществ и превращении энергии в живых клетках и в других процессах.
Изучая живые организмы, вы узнали, что они состоят из тех же химических элементов, что и неживые. В настоящее время известно более 100 элементов, большинство из них встречается в живых организмах. К самым распространенным в живой природе элементам следует отнести углерод, кислород, водород и азот.
Основой всех органических соединений служит углерод. Он может вступать в связь со многими атомами и их группами, образуя цепочки, различные по химическому составу, строению, длине и форме. Из групп атомов образуются молекулы, а из последних — сложные химические соединения, различающиеся по строению и функциям. Эти органические соединения, входящие в состав клеток живых организмов, получили название биологические полимеры, или биополимеры.
Полимер (от греч. polys — многочисленный) — цепь, состоящая из многочисленных звеньев — мономеров, каждый из которых устроен относительно просто. Молекула полимера может состоять из многих тысяч соединенных между собой мономеров, которые могут быть одинаковыми или разными (рис. 1).
Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер. Все они универсальны, так как построены по одному плану у всех живых организмов, независимо от видовой принадлежности.
Для каждого вида биополимеров характерны определенное строение и функции. Так, молекулы белков являются основными структурными элементами клеток и регулируют протекающие в них процессы.
Нуклеиновые кислоты участвуют в передаче генетической (наследственной) информации от клетки к клетке, от организма к организму. Изучая основы генетики, вы узнаете, что генетический код универсален, т. е. одинаков для всех живых организмов.
Углеводы и жиры представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов.
Именно на молекулярном уровне происходит превращение всех видов энергии и обмен вешеств в клетке. Механизмы этих процессов также универсальны для всех живых организмов.
В то же время оказалось, что разнообразные свойства биополимеров, входящих в состав всех организмов, обусловлены различными сочетаниями всего лишь нескольких типов мономеров, образующих множество вариантов длинных полимерных цепей. Этот принцип лежит в основе многообразия жизни на нашей планете.
Специфические свойства биополимеров проявляются только в живой клетке. Выделенные из клеток, молекулы биополимеров теряют биологическую сущность и характеризуются лишь физико-химическими свойствами того класса соединений, к которому они относятся. Другими словами, в изолированном виде молекулы биополимеров являются неживыми.
Только изучив молекулярный уровень, можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в живом организме.
Преемственность между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что биологические молекулы — это тот материал, из которого образуются надмолекулярные клеточные структуры.
Биологическая система. Уровни организации: молекулярный, клеточный, организменный, популяционно-видовой, экосистемный, биосферный. Органические вещества: белки, нуклеиновые кислоты, углеводы, жиры (липиды). Биополимеры. Мономеры.
1. Какие процессы исследуют ученые на молекулярном уровне?
2. Какие элементы преобладают в составе живых организмов?
3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?
4. Что понимается нод универсальностью молекул биополимеров?
Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта
Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 9 класса, книги и учебники согласно календарного плана планирование Биологии 9 класса
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Общая характеристика молекулярного уровня
Урок 3. Введение в общую биологию и экологию 9 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Общая характеристика молекулярного уровня»
Самое первое, с чего обычно начинается изучение новой темы по биологии – это строение. Потому что, не изучив строение, мы вряд ли сможем разобраться с функциями чего-либо.
Вот и вся живая природа или даже можно сказать жизнь на Земле имеет собственное строение. А не только наше сердце с четырьмя камерами или клетки листьев ромашки с хлоропластами внутри.
Упорядоченное строение всей живой природы в целом достаточно условно. Примерно так же, как и разделение всех живых организмов на группы – классификация. Но в тоже время оно общепринято и в любом случае помогает разобраться со всей невообразимой сложностью и запутанностью нюансов жизни на Земле.
Так вот. Всю живую природу можно представить в виде системы. Огромной и сложной. Объять необъятное невозможно, поэтому учёные выделили в этой системе отдельные части – уровни. Которые находятся в соподчинении друг с другом.
Как выделили эти уровни? Дело в том, что жизнь на Земле можно рассматривать, выбирая для изучения разные её части. Более или менее самодостаточные с каким-то одним типом взаимодействия элементов. То есть относительно завершённые. И разные по объёму.
Давайте посмотрим на эти части или, как их называют – уровни.
Химические процессы, происходящие внутри живых организмов, уникальны. Потому что в них участвуют вещества, которые не способны существовать и взаимодействовать между собой вне живых организмов.
Например, ферменты – сложные по строению белковые молекулы – могут проявлять свои свойства только при определённой температуре, давлении, кислотности среды. Эти условия не могут быть соблюдены вне живого организма, соответственно, и ферменты вне живого организма не могут работать. Они утрачивают свою рабочую структуру.
Изучением строения и взаимодействия молекул между собой и занимаются на молекулярном уровне. То есть на уровне молекул. Ещё раз подчеркнём. Этот уровень отнесён к уровню организации живого вещества потому, что вне живых организмов сложные органические вещества становятся не способны к взаимодействию. А вот внутри живых организмов эти «мёртвые» молекулы – они не обладают ни одним свойством живого, о которых мы говорили на прошлом уроке, разве что дискретностью – оживают и способны выполнять уникальные функции.
Соответственно, это и самый простой, начальный уровень организации живого. Так как меньше молекул только отдельные атомы химических элементов. А вот уже если рассматривать взаимодействие атомов между собой – здесь мы не найдём кардинальных отличий – происходит это в живой природе или неживой. Поэтому начальным уровнем организации живого вещества является молекулярный.
Следом за молекулярным выделяют клеточный уровень. Здесь изучается взаимодействие клеточных органоидов на уровне одной клетки. Если организм одноклеточный, то этот уровень совпадает со следующим – организменным.
На организменном уровне изучается работа органов и систем органов многоклеточного организма.
Следующие уровни немного сложнее для понимания, потому что, скажем так, их невозможно потрогать. А можно только представить и убедить себя в том, что они есть. За организменным уровнем следует популяционно-видовой. Где изучается взаимодействие особей между собой в отдельно взятой популяции или виде в целом.
Что здесь можно изучать? Например, численность зайцев на определённой территории, их возрастную структуру, то есть количество особей разного возраста в популяции, половую структуру и так далее.
Без таких данных кроме всего прочего человек не сможет составить достоверный прогноз развития данной части природного сообщества. А это бывает просто необходимо для успешного развития сельского хозяйства и не только.
Более крупным уровнем является экосистемный. Здесь рассматриваются уже не отдельно взятые зайцы леса, а ВСЕ живые организмы, населяющие участок земной поверхности в их взаимодействии со средой обитания. Например, можно рассчитать, сколько данная дубрава выделяет кислорода за это лето. Или за год и так далее.
Наивысшем уровнем организации живого является биосферный. Он состоит из множества экосистем, о которых мы только что говорили. Точнее, не из множества экосистем. А из всех.
Изучая природу на этом уровне, мы можем узнать, например, концентрацию углекислого газа во всей атмосфере Земли, рассчитать, сколько его потребляют живые организмы и предсказать, угрожает ли человечеству глобальное потепление, таяние ледников, повышение уровня воды в мировом океане и всемирный потоп.
Вот таким получился наш краткий обзор уровней организации живой материи. А сегодня начинаем подробное знакомство с первым и самым элементарным – молекулярным. Но несмотря на то, что он первый и в принципе, самый простой по организации – это один из самых загадочных и в силу разных причин, малоизученных уровней.
Попытаемся разобраться в том, что известно о молекулярном уровне на сегодняшний день. Хотя бы частично.
Для этого нам понадобятся знания из химии. По этому уровню без них не ступить и шагу. Вообще, запомните. Химик может позволить себе некоторые пробелы в знании биологии. Потому что знать химию без знания биологии – это возможно. А вот человеку, который слабо разбирается в химии, но собирается стать биологом – дорога туда заказана. Вот почему на нас, биологах, лежит двойная нагрузка. Но давайте двигаться дальше.
Итак, исключительная роль в функционировании живых организмов принадлежит молекулам органических веществ. Как вы знаете, это белки, жиры, углеводы и нуклеиновые кислоты. Также вы знаете, что в состав живых организмов входит более 100 химических элементов. И знаете, что основная роль здесь принадлежит углероду. Почему? А потому, что атомы углерода способны соединяться друг с другом в цепочки. Давая при этом огромнейшее разнообразие органических веществ, которых насчитывается десятки миллионов. По сравнению с несколькими сотнями тысяч неорганических. Кстати, органическую химию ещё так и называют – химия углерода.
А сложные органические вещества, образующие цепочки, в свою очередь – полимерами – от греческого πολύ— – много и μέρος – часть. То есть, это вещества, состоящие из повторяющихся фрагментов – остатков других веществ – мономеров. Из того же греческого – μόνος – один.
В 8 классе вы достаточно подробно останавливались на строении таких веществ при изучении собственных процессов пищеварения. Помните? Откусили кусок булки, а в слюне её уже поджидает фермент амилаза. Которая расщепляет длинные молекулы крахмала до мальтозы, состоящую уже всего из двух молекул. С появлением во рту мальтозы на неё набрасывается фермент мальтаза и режет молекулу сахара напополам всего до одной молекулы сладенькой глюкозы.
Таким образом молекула крахмала, состоящая из повторяющихся молекул глюкозы – это полимер, а сама глюкоза, которая представляет собой одну молекулу – мономер.
Полимер крахмал состоит из мономеров – молекул глюкозы.
Количество мономеров в полимере может быть разным. От нескольких десятков тысяч в том же крахмале до сотен миллионов в молекуле дезоксирибонуклеиновой кислоты.
Не все полимеры или, точнее биополимеры, то есть те, которые встречаются в живых организмах, состоят из одинаковых мономеров. Например, белки, которые начинают перевариваться у нас в желудке, состоят из аминокислот. А аминокислот, которые могут входить в состав белков, двадцать. Поэтому полимеры белки относят к гетерополимерам. То есть, они состоят из разных мономеров.
Вы не запутались? Если честно, на самом деле это всё достаточно сложно. Как и сама жизнь. Имея сложное строение, полимеры проявляют и самые разнообразные свойства. Которые напрямую зависят от количества звеньев, входящих в их состав. А количество мономеров может изменяться в очень широких пределах, как мы выяснили. Но и это не всё. Каждая молекула уникальна благодаря разному чередованию этих звеньев и их взаимному расположению. В результате мы получаем немыслимое разнообразие биомолекул и теперь можем не удивляться многообразию жизненных форм на Земле. НО! В то же время все биологические молекулы построены по единому принципу. И это одно из доказательств единства живой природы.
Да. Наверное, на самом деле мы с вами произошли от бактерий. Если они появились на Земле первыми.
Белки – основные структурные элементы клеток, а также главные ускорители и регуляторы химических реакций.
Углеводы и жиры в основном отвечают за обеспечение необходимой жизненной энергией.
Ну а уникальное строение нуклеиновых кислот (представьте – за открытие строения только одной молекулы ДНК из миллионов других органических веществ учёным была присуждена Нобелевская премия) позволяет записывать, сохранять и передавать в неизменном виде наследственную информацию. То есть всю информацию о строении тех же органических веществ и о том, как когда и где они должны появляться, какие функции выполнять и когда разрушаться, и перерабатываться. Это невероятный объём данных. Если их сравнить с общепринятыми на сегодняшний день, то мы получим, что в одном грамме ДНК (организм человека содержит 150 г) может храниться 700 терабайт данных. Это 233 жёстких диска по 3 терабайта с общим весом в 151 килограмм. Круто, да? Природа уже давно всё придумала за нас.
Молекулярный уровень жизни является базовым для существования всего живого. Именно здесь происходит то, что мы называем процессами жизнедеятельности. Например, каким бы образом живой организм не добывал себе для энергии пищу – будь то бесшумная сова в ночном лесу с мышью в когтях или это мощный дуб, впитывающий листьями углекислый газ, а корнями воду – все они в конечном итоге существуют за счёт образования на молекулярном уровне аденозинтрифосфорной кислоты – универсального источника энергии. С которым вы тоже обязательно познакомитесь на следующих уроках.
Если попробовать сравнить клетку с городом, то клеточные органоиды в нём – это предприятия. А всё высокотехнологичное оборудование этих предприятий – наши с вами органические вещества. Сможет город сохранять свою жизнедеятельность без работающего оборудования промышленных предприятий? Нет. Так и следующие уровни организации жизни на Земле не могут существовать без ещё полного загадок и тайн взаимодействия органических веществ на молекулярном уровне. И если кто-то задастся целью узнать, как же устроена жизнь на планете Земля – ему не обойтись без изучения строения и свойств органических веществ клетки.
Урок Бесплатно Уровни организации живых систем
Введение
Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).
То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.
Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.
Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.
Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.
Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.
Выделяют три большие группы уровней организации:
Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.
Организменный (или онтогенетический) уровень- это сам организм.
Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.
Мы с вами изучим основные уровни организации живых систем:
Суборганизменные уровни организации
1. Молекулярный уровень организации жизни
Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.
Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.
Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.
Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).
Основные процессы молекулярного уровня:
Науки, ведущие исследования на этом уровне:
У меня есть дополнительная информация к этой части урока!
Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).
Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.
На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки
2. Клеточный уровень организации жизни
Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).
Клетка- это структурная и функциональная единица всего живого.
Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».
Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).
Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.
Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.
Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:
Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.
У меня есть дополнительная информация к этой части урока!
Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.
Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.
Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).
После «активации» они служат «материалом» для восстановления (регенерации) пораженных органов или тканей.
Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).
Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.
Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.
Основные процессы клеточного уровня:
Науки, ведущие исследования на клеточном уровне:
3. Тканевый уровень организации жизни
Единицей этого уровня является ткань.
Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.
Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.
В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.
Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.
У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.
У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.
На этом уровне происходит специализация клеток.
Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».
Компоненты тканевого уровня: клетки и межклеточная жидкость.
Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).
Наука, ведущая исследования на тканевом уровне:
4. Органный уровень организации жизни
Составляют этот уровень органы многоклеточных организмов.
Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.
Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.
У меня есть дополнительная информация к этой части урока!
У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.
Организменный уровень организации жизни
Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.
При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.
Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.
Основные процессы органного уровня:
Науки, ведущие исследования на органном уровне:
У меня есть дополнительная информация к этой части урока!
Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).
К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.
Пройти тест и получить оценку можно после входа или регистрации