Что относится к мейозу
МЕЙО́З
Том 19. Москва, 2011, стр. 608-609
Скопировать библиографическую ссылку:
МЕЙО́З (от греч. μείωσις – уменьшение), способ деления клеток, при котором происходит уменьшение (редукция) числа хромосом и переход клеток из диплоидного состояния (с двойным набором хромосом) в гаплоидное (с одинарным набором); обязательное условие формирования половых клеток. Редукция числа хромосом вдвое при М. составляет биологич. смысл этого процесса и определяет его важную роль в механизме полового размножения эукариот: разделённый в ходе М. генетич. материал родительских клеток вновь объединяется в результате оплодотворения. Тем самым восстанавливается плоидность и сохраняется постоянство числа хромосом при смене поколений. Впервые М. описан у животных (1882) нем. цитологом В. Флемингом, у растений – нем. ботаником Э. Страсбургером (1888). У разных организмов М. протекает на разл. этапах жизненного цикла. Напр., у мн. грибов и некоторых водорослей, в жизненном цикле которых преобладает гаплоидная фаза, он происходит сразу после оплодотворения в зиготе ( зиготны й, или начальный, М.). У голосеменных и цветковых растений М. наблюдается у диплоидного поколения (спорофита) в период образования женских и мужских спор ( споровы й, или промежуточный, М.); прорастающие гаплоидные споры формируют гаплоидное поколение – гаметофиты, продуцирующие половые клетки. У многоклеточных животных, в т. ч. у человека, М. протекает в половых железах и сопровождает гаметогенез ( гаметны й, или конечный, М.).
Мейоз
Из Википедии — свободной энциклопедии
Мейо́з (от др.-греч. μείωσις — «уменьшение»), или редукционное деление — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). В результате мейоза образуются гаметы (у животных), споры (у грибов и растений) и другие зародышевые клетки (например, агаметы у фораминифер).
С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.
В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.
Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора). Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).
Мейоз
Мейо́з (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.
С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.
В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.
Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).
Содержание
Фазы мейоза
Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.
В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).
Варианты
Митоз и мейоз
Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Бинарное деление надвое
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Деление клетки: мейоз — фазы и биологическое значение
В этой статье мы разберемся, что такое мейоз и через какие фазы он проходит. Поймем какой хромосомный набор на каждом этапе такого деления и что обозначают все эти n и c. А самое главное — какое биологическое значение у мейоза. В конце сравним его с митозом, выявим сходства и различия между ними.
Что же такое мейоз?
Мейоз — это способ деления клетки. Его еще называют редукционным делением, потому что из одной диплоидной клетки получается четыре гаплоидных, то есть происходит уменьшение хромосом в два раза.
Какие клетки могут так делиться? Эукариотические, но не все, а только избранные. Прежде всего, это предшественники половых клеток человека — сперматоциты и овоциты (или ооциты). Ещё таким способом образуются споры у высших растений.
Хромосомный набор
Начнем с хромосомы. Представьте себе мешок с картошкой. Вот хромосома — это такой мешок, только вместо картошки в ней длинная молекула ДНК, которая связана с белками — гистонами и негистонами.
Всего у нас 46 хромосом или 23 пары. Почему пары? Дело в том, что у каждой хромосомы есть своя сестричка — двойняшка (гомолог). Вроде они и очень похожи, но разница есть. Они содержат похожие молекулы ДНК, но не такие же! Гомологичные хромосомы могут содержать немного разные нуклеотидные последовательности, а значит по-разному проявляют признаки.
Когда у каждой хромосомы есть своя пара, то это диплоидный набор — 46 хромосом. Если пары нет, то это гаплоидный набор — 23 хромосомы.
n — это число хромосом. У каждой есть своя пара, значит всего 2n.
c — это число молекул ДНК, в одной хромосоме одна молекула. Всего молекул = 2c
Редукционный этап или первое деление мейоза
Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся.
Интерфаза
Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.
В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c
Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна. После репликации начинается собственно мейоз, а именно его первая фаза:
Профаза мейоза I
Лептотена
Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.
Зиготена
Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.
Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!
Пахитена
Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.
Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину:
Схема. Кроссинговер.
В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга.
Диплотена
Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).
Диакинез
Хромосомный набор в конце профазы I
Метафаза мейоза I
В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки.
Набор в метафазе I
Анафаза мейоза I
Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.
n2c у полюсов, но вся клетка 2n4c
Телофаза мейоза I
Образование двух гаплоидных клеток — n2c
Результат редукционного деления
Второй этап мейоза — эквационный
Начинается сразу же после первого. Эквация — это уравнивание. Так что задача клетки на этом этапе — сделать так, чтобы в одной хромосоме была одна молекула ДНК.
Он похож на митоз, здесь к полюсам клетки отправятся хроматиды, а не целые хромосомы и мы получим из каждой клетки по две — с набором nc.
Протекает он через такие же фазы, но с одним исключением. Здесь не будет интерфазы — клетка уже готова к делению, она запасла энергетические субстраты и белки ещё перед началом первого деления. Поэтому сразу начинается профаза II.
Профаза мейоза II
Клетка уже сделала свою работу — упаковала генетический материал как можно лучше. Ей ничего не нужно делать, ну почти. Разве что растворить ядерные оболочки и достроить веретено деления. Этим она и займется.
Вы конечно понимаете, что вторая клетка идет по такому же пути. Просто мне лень рисовать сразу две.
Набор в профазу II
Метафаза мейоза II
Прикрепление нитей веретена деления к центриолям — хромосомы снова на экваторе клетки.
Анафаза мейоза II
Торжественный момент — сейчас наши хроматиды станут полноценными хромосомами. Каждая разойдется к своему полюсу.
Поздравляем, ох уж эти хроматиды, они так быстро растут…
У полюсов — nc, всего 2n2c, так как каждая хроматида теперь — это полноценная хромосома.
Набор в анафазу II
Телофаза мейоза II
Вокруг хромосом формируются ядерные мембраны, появляется перетяжка и делит клетку на две.
Вторая клетка прошла через такое же деление. Всего из одной диплоидной клетки 2n2c получилось четыре гаплоидных с набором nc.
Четыре клетки с хромосомным набором — nc
Биологическое значение мейоза
1)Передать свой генетический материал будущим поколениям.
2)Поддержать диплоидный набор хромосом у организма. В конце мейоза формируются гаплоидные клетки, которые после оплодотворения образуют диплоидный набор.
3)Мейоз обеспечивает не только передачу генетической информации, но и ее преобразование — основа изменчивости. Кроссинговер обеспечивает взаимный обмен у гомологичных хромосом. В анафазу I к полюсам клетки независимо расходятся гомологичные хромосомы, а в анафазу II — хроматиды. Так формируются уникальные комбинации генов.