Что относится к механизмам физической терморегуляции ответ
Что относится к механизмам физической терморегуляции ответ
Метеотропные реакции – это физиологические реакции организма человека на влияние собственно метеорологических факторов. Здоровые люди легко переносят изменения погоды, адаптивные физиологические механизмы позволяют им приспосабливаться без заметных расстройств к любым метеоусловиям, вместе с тем снижение эффективности этих механизмов приводит к возникновению различных патологических реакций. В большинстве случаев они непродолжительны и сопровождаются такими симптомами, как головные боли, раздражительность, повышенная возбудимость, бессонница, депрессия, ревматоидные боли и др. Развитие таких ответных реакций на влияние погоды чаще всего обозначают как метеочувствительность. Во многих исследованиях показано, что существует достоверная связь между обострением ряда патологических состояний и изменениями погодных условий [1–3].
В большинстве публикаций выделяются следующие основные погодные факторы, оказывающие влияние на здоровье человека: температура окружающей среды, влажность воздуха, атмосферное давление, скорость ветра, солнечная активность, геомагнитная активность и атмосферное электрическое поле [4, 5]. Помимо этих факторов анализируется влияние сезонов года и состояния окружающей среды [6]. Несмотря на многолетнюю историю изучения метеочувствительности, физиологические механизмы воздействия погоды на человека остаются не до конца ясными. Наиболее изучены механизмы влияния на организм человека температуры окружающего воздуха.
На увеличение температуры окружающей среды реагируют тепловые терморецепторы кожи, импульсы от них поступают в центры терморегуляции, расположенные в гипоталамусе, которые в свою очередь запускают каскад реакций, индуцирующих кожную вазодилятацию и потоотделение. Возрастание кожного кровотока увеличивает теплоотдачу во внешнюю среду и обеспечивает потовые железы кислородом и жидкостью для выделения пота. Потоотделение – это самый эффективный механизм срочной адаптации к высокой температуре окружающей среды, который позволяет за счет интенсивного испарения пота с кожи (до 3 кг/ч) значительно увеличить выделение тепла из организма. Однако с потом, помимо воды, организм теряет и электролиты (до 10–30 г хлористого натрия в день), что индуцирует интенсивный переход жидкости в кровяное русло для компенсации потери на потоотделение. Перераспределение жидкости стимулирует почки к усилению ретенции солей и воды. Дилатация кожных сосудов (прежде всего открытие артериовенозных анастамозов) обуславливает реакции, индуцирующие увеличение объема циркулирующей крови, при этом в норме артериальное давление не изменяется или несколько снижается, а частота сердечных сокращений увеличивается. Кровоток во внутренних органах (печень и почки) может снижаться [7].
При недостаточности адаптационных механизмов, направленных на поддержание объема плазмы крови и ее электролитного состава, или при интенсивном и длительном потоотделении наблюдается уменьшение объема циркулирующей крови и существенное снижение артериального давления. В связи с этим при срочной адаптации к повышению температуры основная нагрузка ложится на сердечно-сосудистую систему, которая, при наличии функциональных нарушений может не справляться с возросшими потребностями. Поэтому в жаркую погоду, особенно в периоды «волн жары» (нескольких последовательных аномально жарких дней), в наибольшей степени страдают пациенты с болезнями системы кровообращения, адаптивные резервы у которых оказываются недостаточными.
Кроме того, перераспределение крови, направленное на значительное увеличение кожного кровотока и уменьшение кровотока во внутренних органах – органах с высоким уровнем обменных процессов, с одной стороны, приводит к увеличению теплоотдачи с поверхности тела, а с другой – к уменьшению теплопродукции внутренними органами при их сниженном кровоснабжении. Вместе с тем уменьшение кровотока в органах с высоким метаболизмом, особенно у больных с атеросклерозом или заболеваниями печени и почек может индуцировать их гипоксию. Во многих исследованиях показано, что при напряженной адаптации, видимо, вследствие возникающей гипоксии индуцируется окислительный стресс [8–11], который характеризуется накоплением высокотоксичных продуктов свободнорадикального окисления в крови и тканях вследствие усиленного генерирования активных форм кислорода (АФК) и/или подавления активности утилизирующих АФК антиоксидантных ферментов. В исследовании М.Д. Смирновой с соавторами [9] отмечено, что летняя жара провоцирует развитие окислительного стресса у 2/3 больных сердечно-сосудистыми заболеваниями. У них увеличивается содержание продуктов перекисного окисления липидов в отсутствие изменений активности фермента, утилизирующего активные формы кислорода [10]. Кроме того, у этих же пациентов отмечена большая частота развития сердечно-сосудистых осложнений, включая гипертонические кризы, по сравнению с пациентами с большей активностью антиоксидантной системы. При этом показано, что использование антигипоксантов и антиоксидантов позволяет улучшить переносимость летней жары пациентами с сердечно-сосудистыми заболеваниями [11].
На снижение температуры окружающей среды ниже комфортной реагируют холодовые терморецепторы кожи, импульсы от них поступают в центр терморегуляции в гипоталамусе, который, в свою очередь, запускает каскад реакций, индуцирующих кожную вазоконстрикцию и увеличение теплопродукции. Основное увеличение теплопродукции достигается за счет сократительной деятельности мышц (дрожь и терморегуляционный мышечный тонус), разобщения окисления и фосфорилирования, а также снижения эффективности клеточных насосов (АТФаз), что стимулируется норадреналином и тиреоидными гормонами и сопровождается увеличением потребления кислорода и энергетических субстратов. При длительной адаптации к холоду увеличивается количество и активность митохондрий для обеспечения возросшего потребления АТФ. Подробный анализ основных механизмов адаптации к холоду сделан в обзоре [12]. Органами, дающими основной вклад в теплопродукцию при адаптации человека к холоду, являются скелетные мышцы и, в меньшей степени, печень. Увеличение активности митохондрий при холодовой адаптации приводит к усилению генерации активных форм кислорода, поскольку митохондрии являются одним из основных источников АФК в физиологических условиях. На уровне организма систематическое холодовое воздействие вызывает стимуляцию собственных защитных ресурсов посредством усиления окислительных процессов, которые, в свою очередь, инициируют активацию антиоксидантной системы и повышают общую устойчивость организма к стрессовым факторам различной природы. Однако при недостаточности адаптационного потенциала, например при болезнях системы кровообращения, усиление кровотока для обеспечения кровоснабжения активно работающих (производящих тепло) органов лимитируется сердечно-сосудистой системой, недостаточный ее потенциал может обуславливать гипоксию и чрезмерное увеличение АФК. Мобилизация антиоксидантной системы при этом также может быть недостаточной, что в свою очередь будет приводить к окислительному стрессу, усилению перекисного окисления липидов и обострению заболевания. Во многих исследованиях показано, что окислительный стресс является этиологическим и патогенетическим фактором риска развития заболеваний сердечно-сосудистой системы [13, 14].
Среди неблагоприятных погодных факторов, помимо жаркой и холодной погоды, выделяют значительные колебания атмосферного давления [15, 16], которые обычно связаны с крупномасштабными (синоптическими) циркуляционными процессами в атмосфере. В ходе этих процессов изменяется вся совокупность метеорологических элементов. В весенний период наблюдаются наибольшие различия между дневными и ночными значениями атмосферного давления, и потенциальная зависимость обострения некоторых болезней системы кровообращения от резкого изменения атмосферного давления, видимо, может объяснить выявленный в исследовании K. Beseoglu с соавт. [17] весенний максимум смертности и количества обострений сосудистых заболеваний.
Еще одним погодным фактором, который, по мнению некоторых исследователей, оказывает существенное влияние на метеочувствительных людей, является влажность атмосферного воздуха [18–20]. P. Dilaveris с соавторами [18] установили, что среднемесячная смертность от инфаркта миокарда в Афинах является линейной функцией от среднемесячной относительной влажности (связь положительная) c максимальными значениями в зимние месяцы и минимальными в летние. Вместе с тем в средиземноморских странах высокая относительная влажность воздуха регистрируется в зимний период, а выявленная в работах [19] закономерность отражает установленный во многих исследованиях факт более высокой смертности зимой. При этом в странах с более холодным климатом в зимний период, когда наибольшее количество обострений болезней системы кровообращения, регистрируются низкие значения относительной и абсолютной влажности. В работах Б.Т. Величковского [20] показано, что значительное снижение абсолютной влажности воздуха в зимний период, обусловленное очень низкими значениями температуры атмосферного воздуха, приводит к снижению эффективности газообмена кислорода в органах дыхания. Кроме того, дыхание сухим воздухом может индуцировать повышение сосудистого сопротивления.
Разными исследователями было отмечено, что метеотропные реакции могут возникать за несколько дней до наступления неблагоприятных погодных условий. Это может быть обусловлено тем, что существенному изменению земной погоды обычно предшествуют изменения солнечной активности и сдвиги магнитной напряженности Земли.
В последние десятилетия был проведен ряд специальных исследований, направленных на анализ влияния космической погоды (гелио- и геомагнитной обстановки) на состояние здоровья.
Для характеристики солнечной активности обычно используют число Вольфа – индекс, характеризующий пятно-
образовательную деятельность Солнца. Для характеристики геомагнитной обстановки используют X-,Y- и Z-компоненты вектора напряженности магнитного поля Земли, а также индексы геомагнитной активности, характеризующие вариации магнитного поля Земли. Резкие изменения параметров геомагнитного поля Земли обычно называют геомагнитными возмущениями или бурями.
Как и при анализе влияния факторов земной погоды, результаты исследования влияния космической погоды на состояние здоровья весьма противоречивы. Анализ баз данных обращений за экстренной медицинской помощью [21–23] и наблюдения за больными в клиниках [21, 24] показали, что имеется достаточно широкий спектр реакций организма на изменение космической погоды. В исследованиях Ю.И. Гурфинкеля с соавторами [24] показано, что после магнитной бури образуются сгустки эритроцитов (сладжей) в микрососудах и отмечается ухудшение кровотока, которое приводит к развитию ишемии. В исследовании [22, 23] была показана положительная корреляционная связь между количеством обращений за экстренной медицинской помощью пациентов с болезнями системы кровообращения и уровнем геомагнитной активности (ГМА) и отмечено, что эта связь более выражена в зимние месяцы. В других исследованиях показано увеличение количества обострений болезней системы кровообращения как при очень высоких, так и при очень низких уровнях ГМА [23]. Вместе с тем T. Messner с соавторами [25] не выявили достоверной статистической связи между геомагнитной активностью и количеством инфарктов миокарда в северных районах Швеции. При этом изменения геомагнитной активности в полярных районах наибольшие [26].
Механизмы действия геомагнитного поля и солнечной активности на организмы человека и животных не выяснены. Существенная проблема связана с парадоксальностью биологического действия слабых низкочастотных магнитных полей (каким является и геомагнитное поле), энергия которых много меньше характерной энергии биохимических превращений [27]. Тем не менее в биологических и медицинских исследованиях показано достоверное влияние слабых магнитных полей на организм человека [22, 27, 28]. В биофизических исследованиях наиболее часто обсуждаются гипотетические молекулярные механизмы магниторецепции, рассматривающие влияние магнитного поля на скорость реакций с участием спин-коррелированных пар радикалов; квантовые вращения молекулярных групп внутри белков, а также изменения свойств жидкой воды в магнитном поле [21, 27]. В медико-биологических исследованиях наиболее часто обсуждается роль мелатонина [21, 29]. В исследованиях, проведенных на людях в условиях Крайнего Севера, показана прямая корреляционная зависимость между колебаниями электромагнитного поля Земли (Kp–индекс) и суточным ритмом секреции мелатонина, определяемым по его концентрации в слюне [29]. В исследованиях под руководством С.И. Рапопорта [3, 23] было показано, что у пациентов с заболеваниями сердечно-сосудистой системы в периоды геомагнитных возмущений и магнитных бурь отмечается достоверное подавление продукции мелатонина. При этом добавление мелатонина (3–6 мг в 22.00) к традиционной терапии снижало риск развития сердечно-сосудистых осложнений.
Еще одним фактором, потенциально обуславливающим метеочувствительность организма, может быть изменение электрического поля атмосферы (ЭПА). В районах ясной безоблачной погоды ЭПА направлено вниз, к земле, и его напряженность составляет около 1 В/м. Основными источниками ионизации воздуха являются космические лучи и излучения радиоактивных веществ, содержащихся в земной коре и атмосфере. Электрические характеристики приземного ЭПА определяются различными процессами: интенсивностью ионизации и перемешивания атмосферы, загрязненностью и увлажненностью воздуха (туман, дождь, снег), температурой и давлением воздуха, временем суток и временем года и др. В циклонических условиях погоды появление слоистой облачности верхнего и более низких ярусов, а также конвективной облачности индуцирует кардинальные изменения приземного электрического поля. Как правило, происходит переполюсовка (инверсия), в ходе которой поле становится направленным вверх, к нижней кромке облаков. Напряженность поля может увеличиваться до 2000 В/м и выше. Атмосферные ионы различаются по химической природе входящих в них молекул, массой и подвижностью. Подвижность отрицательных ионов, как правило, больше, чем положительных [30]. У земной поверхности над сушей концентрация тяжелых ионов значительно больше, чем легких. Это обусловлено тем, что в результате нормальных процессов ионизации создаются лишь легкие ионы, а тяжелые ионы могут образовываться лишь в случае присоединения легких к частицам аэрозоля, концентрация которого в нижних слоях воздуха больше. При запыленности воздуха вследствие увеличения числа взвешенных в атмосфере частиц число легких ионов убывает, а число тяжелых возрастает. Кроме того, концентрации ионов могут меняться вследствие их переноса под действием электрических сил, а также диффузии от мест с большей концентрацией и их механического переноса с движущимися массами воздуха. Концентрация легких отрицательно заряженных аэроионов возрастает при прохождении теплых воздушных фронтов и снижается в холодных фронтальных массах воздуха. Летом лёгких ионов больше, чем зимой. Особенно их много после дождя. Во многих исследованиях показано, что увеличение концентрации легких отрицательных ионов положительно влияет на организм [31, 32]. Таким образом, изменение состояния электрического поля атмосферы может влиять на самочувствие людей посредством механизмов, обусловленных динамикой концентрации легких отрицательных аэроионов, вызванной собственно электрическими процессами в тропосфере или изменением концентрации аэрозолей в воздухе. Кроме того, поскольку при изменении абсолютной влажности и атмосферного давления ионизация воздуха также может меняться, то эти же механизмы могут в какой-то степени обусловливать и чувствительность к перепадам атмосферного давления и влажности.
В заключение необходимо отметить, что метео- и гелиогеофизические факторы вызывают ответные реакции в организме любого человека, однако их негативное влияние, которое обычно называется метеочувствительностью, в основном связано с пониженными адаптационными резервами организма.
Что относится к механизмам физической терморегуляции ответ
Наряду с эндогенными процессами для поддержания нормальной температуры тела важнейшим механизмом является изменение характера поведения, или поведенческая терморегуляция.
Для холоднокровных животных этот механизм является определяющим. Поддерживающими постоянную температуру факторами являются изменение позы, поиск укрытия, по возможности выбор более теплой или холодной среды и т. п. Человек для поддержания оптимальной температуры тела нередко прибегает к усиленным мышечным движениям, особенно для согревания на холоде. При ходьбе теплопродукция увеличивается в 2 раза, а при беге или интенсивной работе — в 4—5 раз. Повышение температуры тела при этом даже на несколько десятых градуса способствует ускорению окислительных процессов, в частности — окислению продуктов белкового катаболизма. Кроме того, для человека не менее важными факторами поддержания оптимальной температуры тела является ношение одежды, соответствующей температуре окружающей среды, и оборудование жилища (утепление жилища зимой и использование кондиционеров в жаркое время года).
Регуляция температуры тела. Восприятие организмом температурных воздействий (терморецепция).
Изменение температуры внутренней среды («ядра») и поверхностных отделов («оболочки») тела человека воспринимается организмом с помощью терморецепторов. Температурная рецепция осуществляется окончаниями тонких чувствительных нервных волокон типа С и А (8), которые представлены в коже, слизистых оболочках, мышцах, сосудах, во внутренних органах (периферические терморецепторы). Холодо- и теплочувствительные нейроны располагаются в медиальной преоптической области переднего гипоталамуса (центральные терморецепторы).
Восприятие температурных раздражений из внешней среды и формирование температурных ощущений у человека осуществляется с помощью терморецепторов кожи и слизистых оболочек, среди которых имеются холодовые рецепторы (повышают частоту передачи нервных импульсов по афферентным нервным волокнам к терморегуляторному центру при их охлаждении и снижают эту частоту при их нагревании) и тепловые рецепторы (реагируют на изменение температуры тела противоположным образом). В коже и на слизистых оболочках человека больше холодовых рецепторов (около 250 000), чем тепловых (около 30 000). Кроме того, холодовые рецепторы кожи расположены более поверхностно, на глубине 0,17 мм, а тепловые — более глубоко, на глубине 0,3 мм. Эта особенность расположения терморецепторов обусловливает более раннее восприятие организмом человека холода, чем тепла. Другая особенность терморецепторов — их неравномерное распределение в коже по площади, что определяет различный уровень чувствительности к холоду и теплу разных участков тела. Наибольшей чувствительностью обладает кожа лица, наименьшей — кожа нижних конечностей.
Афферентный поток нервных импульсов от периферических терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов. Затем по спиноталамическому тракту этот поток импульсов достигает передних ядер таламуса и далее проводится в сомато-сенсорную кору больших полушарий головного мозга. Поступление нервных импульсов от периферических терморецепторов в соматосенсорную кору обеспечивает возникновение и топическую локализацию субъективных температурных ощущений, таких как «тепло», «холодно», «прохладно», «жарко», «температурный комфорт» или «дискомфорт». На их основе формируются поведенческие терморегуляторные реакции. Значительная часть афферентных импульсов от периферических рецепторов кожи и внутренних органов поступает из спинного мозга по волокнам спиноталамическо-го тракта к нейронам гипоталамического центра терморегуляции.
Глава VII. Физиология теплообмена
Понятие о гомойотермии и пойкилотермии
Жизнедеятельность животного и человека связана с постоянным потреблением энергии, которую организм получает за счет поступления и переработки питательных веществ. Химические превращения, протекающие в клетках организма в процессе обмена веществ, сопровождаются теплообразованием.
Животных с постоянной температурой тела называют гомойотермными (теплокровными). Относительное постоянство температуры тела у таких животных обеспечивается изменением теплопродукции и теплоотдачи.
Постоянство температуры тела называют изотермией. Значение изотермии заключается в том, что она обеспечивает независимость обменных процессов в тканях и органах от колебаний температуры окружающей среды. Человек является теплокровным существом.
Температура тела человека
Рис. 38. Температура кожи разных участков тела человека
Температура внутренних органов более высокая, поэтому сложилось представление об «оболочке» и «ядре» тела, «Оболочка» тела имеет более низкую температуру, которая подвержена значительным колебаниям. В состав «оболочки» входят кожа, скелетные мышцы. Установлено, что температура мышечной ткани в состоянии покоя и работы может колебаться в пределах 7°С. «Ядро» тела имеет более высокую температуру, колебания которой сравнительно невелики. «Ядро» включает внутренние органы. Температура внутренних органов зависит от интенсивности обменных процессов. Наиболее интенсивно обменные процессы протекают в печени, которая является самым «горячим» органом тела: температура в ткани печени равна 38-38,5°С. Температура в прямой кишке составляет 37-37,5°С. Однако она может колебаться в пределах 4-5°С в зависимости от наличия в ней каловых масс, кровенаполнения ее слизистой оболочки и других причин. У бегунов на длинные (марафонские) дистанции в конце состязаний температура в прямой кишке может повышаться до 39-40°С.
Теплопродукция и теплоотдача, их компенсаторные изменения
Тепловой обмен в животном организме тесно связан с энергетическим. При окислении органических веществ, например глюкозы, пировиноградной кислоты, выделяется энергия. Часть этой энергии рассеивается в виде тепла и не может быть использована организмом для совершения какой-либо работы. Другая часть энергии идет на синтез АТФ. Молекулы АТФ, как уже указывалось, обладают способностью аккумулировать энергию. Эта потенциальная энергия может быть использована организмом в его деятельности.
Разобщение окислительного фосфорилирования может произойти, например, под влиянием гормонов щитовидной железы. В этом случае для образования достаточного количества АТФ окислительные процессы должны протекать более интенсивно, а значительная часть выделяющейся энергии рассеивается в виде тепла.
Таким образом, соотношение теплового и энергетического обмена определяется изменением направленности окислительных процессов в организме.
Источником тепла в организме являются все ткани. Кровь, протекая через ткани, нагревается. Некоторые органы, например печень, скелетные мышцы, отдают крови больше тепла, чем другие. Общее количество тепла, получаемое кровью, равно суммарному количеству тепла, выделяющегося всеми тканями.
Физическая терморегуляция. Этот процесс осуществляется за счет отдачи тепла во внешнюю среду путем конвекции (теплопроведения), радиации (теплоизлучения) и испарения воды.
Конвекция (теплопроведение) заключается в непосредственной отдаче тепла прилегающим к коже предметам или частицам среды. Отдача тепла тем интенсивнее, чем больше разница температур между поверхностью тела и окружающим воздухом. Чем холоднее воздух, тем сильнее он охлаждает кожу. Если же воздух теплее кожи, то проведение тепла будет идти в противоположном направлении, это вызовет повышение температуры кожи.
Интенсивность отдачи тепла во многом зависит от теплопроводности окружающей среды. В воде отдача тепла происходит быстрее, чем на воздухе. Одежда уменьшает или даже прекращает теплопроведение.
В состоянии относительного покоя взрослый человек выделяет во внешнюю среду 15% тепла путем теплопроведения, около 66% посредством теплоизлучения и 19% за счет испарения воды.
При повышении температуры окружающей среды, при физической нагрузке потоотделение увеличивается. Человек способен в сутки выделить до 10-15 л жидкости с потом. В среднем же человек теряет за сутки около 0,8 л пота, а с ним 2,1 мДж (500 ккал) тепли.
При дыхании человек также выделяет ежесуточно около 0,5 л воды. Энергия при этом тратится не только на испарение воды с поверхности дыхательных путей, но и на согревание выдыхаемого воздуха. При физической работе вентиляция легких увеличивается, а это приводит к повышению теплоотдачи.
При низкой температуре окружающей среды (15°С и ниже) около 90% суточной теплоотдачи происходит за счет теплопроведения и теплоизлучения. В этих условиях видимого потоотделения не происходит.
У человека большую роль в изменении теплоотдачи играет выбор одежды в зависимости от температуры окружающей среды. Мало проницаемая для паров воды одежда препятствует эффективному потоотделению и может служить причиной перегревания организма человека.
В горячих цехах, в жарких странах, при длительных походах человек теряет большое количество жидкости с потом. При этом появляется чувство жажды, которое не утоляется водой. Это связано с тем, что с потом теряется большое количество минеральных солей. Если добавить к питьевой воде соль, то чувство жажды исчезнет и самочувствие людей улучшится.
Таким образом, постоянство температуры тела человека обеспечивается механизмами физической и химической терморегуляции.
Центры регуляции теплообмена, их афферентные и эфферентные связи
Организм должен обеспечивать постоянство температуры не только в покое и при комфортной температуре (18-22°С), но и при различных нагрузках, а также при изменении температуры окружающей среды. Для этого организм человека располагает специальными физиологическими механизмами, регулирующими температуру тела.
Терморегуляция осуществляется рефлекторно. Колебания температуры окружающей среды воспринимаются особыми рецепторами, получившими название терморецепторов. В большом количестве терморецепторы располагаются в коже, слизистой оболочке полости рта, верхних дыхательных путях. Обнаружены терморецепторы во внутренних органах, венах, а также в некоторых образованиях центральной нервной системы.
Нервные импульсы, возникающие в терморецепторах, по афферентным нервным волокнам поступают в спинной мозг. По проводящим путям они достигают зрительных бугров, а от них идут в гипоталамическую область и к коре головного мозга. В коре головного мозга возникают ощущения тепла или холода.
Спинной мозг является проводником нервных импульсов не только от терморецепторов к головному мозгу, но и от головного мозга к мышцам, сосудам, потовым железам. В спинном мозге находятся центры некоторых терморегуляторных рефлексов. Однако одних спинальных терморегуляторных механизмов недостаточно для обеспечения постоянства температуры тела.
Гипоталамус является основным рефлекторным центром теплорегуляции. Нейроны гипоталамуса возбуждаются под влиянием нервных импульсов, поступающих от терморецепторов. В гипоталамусе обнаружены собственные терморецепторы, которые возбуждаются в ответ на изменение температуры крови (улавливают изменения температуры на сотые доли градуса).
При разрушении гипоталамической области гомойотермные животные теряют способность поддерживать постоянную температуру тела и становятся пойкилотермными. Установлено, что передние отделы гипоталамуса контролируют механизмы физической терморегуляции (за счет изменения тонуса кровеносных сосудов и интенсивности потоотделения), т. е. они являются центром теплоотдачи. При их разрушении животные хорошо переносят холод, но быстро перегреваются при повышении температуры окружающей среды. Задние отделы гипоталамуса контролируют химическую терморегуляцию и являются центром теплообразования. При их разрушении животные не переносят холод, так как не происходит компенсаторного повышения теплообразования.
Важная роль в регуляции температуры тела принадлежит коре головного мозга. В лаборатории К. М. Быкова в опытах на собаках установлена возможность условнорефлекторных изменений теплоотдачи и теплопродукции. Собаку неоднократно помещали в комнату с температурой воздуха 22°С. У животного увеличивалась теплоотдача (учащалось дыхание, собака высовывала язык, что увеличивало испарение слюны). Затем собаку приводили в эту же комнату, но температура воздуха в ней была равна 10°С. В данных условиях у животного также возникало увеличение отдачи тепла, несмотря на низкую температуру окружающей среды, т. е. у собаки возник условный терморегуляционный рефлекс на обстановку комнаты.
Эфферентными нервами центра теплорегуляции являются главным образом симпатические волокна. Если разрушить симпатическую нервную систему (произвести десимпатизацию), то раздражение центров теплорегуляции гипоталамуса не вызовет изменения температуры тела.
В регуляции теплообмена участвует и гормональный механизм, в частности гормоны щитовидной железы и надпочечников. Гормон щитовидной железы тироксин, повышая обмен веществ в организме, увеличивает теплообразование. Поступление тироксина в кровь возрастает при охлаждении организма. Гормон надпочечников адреналин усиливает окислительные процессы, увеличивая тем самым теплообразование. Кроме того, адреналин суживает сосуды, в частности кожи, и за счет этого уменьшается теплоотдача.
Рассмотрим механизмы, которые обеспечивают приспособление организма к пониженной температуре окружающей среды. При понижении температуры окружающей среды происходит рефлекторное возбуждение гипоталамуса. Повышение его активности стимулирует гипофиз, результатом чего является усиленное выделение тиреотропного и адренокортикотропного гормонов. Эти гормоны повышают активность соответственно щитовидной железы и надпочечников. Гормоны данных желез стимулируют теплопродукцию, а адреналин, кроме того, суживая сосуды, уменьшает теплоотдачу.
Таким образом, при охлаждении включаются защитные механизмы организма, повышающие обмен веществ, теплообразование и уменьшающие теплоотдачу.
Регуляция обмена веществ и энергии
Нервная система регулирует обменные, энергетические и тепловые процессы в организме. Впервые это было показано в опытах Клода Бернара и И. П. Павлова. В середине прошлого века Клод Бернар, произведя укол иглой в дно IV желудочка продолговатого мозга кролика, обнаружил резкое повышение уровня сахара в крови и появление его в моче. Этот опыт получил название «сахарный укол». Впоследствии было показано, что «сахарный укол» нарушает не только углеводный, но и другие виды обмена. Под влиянием этого вмешательства у животных понижается температура печени, мышц, кишечника, повышается интенсивность белкового обмена, что сопровождается увеличенным выделением азота с мочой.
В дальнейшем была установлена возможность условнорефлекторных изменений уровня обмена веществ. Если многократно сочетать прием человеком сахара с одновременным включением метронома, то через некоторое время изолированное применение условного сигнала приводит к повышению содержания сахара в крови. Условнорефлекторный механизм изменения обмена веществ и энергии наблюдается у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей и на словесный раздражитель.
Влияние нервной системы на обменные и энергетические процессы в организме опосредуется несколькими путями:
1) непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;
2) опосредованное влияние нервной системы через гипофиз и его соматотропный гормон;
3) опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;
4) прямое влияние нервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.
Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. В гипоталамусе обнаружены группы ядер, которые регулируют обмен углеводов, жиров, белков, воды и солей, а также обмен тепла и потребление пищи.
Как уже указывалось, выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Так, гормоны щитовидной железы в определенных дозах, соматотропный гормон гипофиза, инсулин, половые гормоны (андрогены) усиливают синтетические процессы в организме, особенно в отношении белка (анаболическое действие гормонов). Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.
В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее действие на обменные процессы, но при этом увеличивается также выход гормонов щитовидной железы и надпочечников (тироксин и адреналин) в кровь. За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при недостатке в организме гормонов желез внутренней секреции. Так, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.
Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды).
Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.