Что относится к формам записи алгоритмов
Что относится к формам записи алгоритмов
Формы записи алгоритмов
На практике наиболее распространены следующие формы представления алгоритмов:
1. Словесный способ записи алгоритма
Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.
Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел (алгоритм Эвклида).
Словесный способ не имеет широкого распространения, так как такие описания:
2. Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.
Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. В таблице приведены наиболее часто употребляемые символы.
Блок «процесс» применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.
Блок «решение» используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.
Блок «модификация» используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.
Блок «предопределенный процесс» используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.
Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.
Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.
В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.
Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.
Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.
Алгоритмы
Алгоритмы. Способы записи алгоритмов
Выделяют три наиболее распространенные на практике способа записи алгоритмов:
Словесный способ записи алгоритмов
Словесный способ – способ записи алгоритма на естественном языке. Данный способ очень удобен, если нужно приближенно описать суть алгоритма. Однако при словесном описании не всегда удается ясно и точно выразить логику действий.
В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника
где S – площадь прямоугольника; а, b – длины его сторон.
Очевидно, что a, b должны быть заданы заранее, иначе задачу решить невозможно.
Словестный способ записи алгоритма выглядит так:
Графический способ описания алгоритмов
Для более наглядного представления алгоритма используется графический способ. Существует несколько способов графического описания алгоритмов. Наиболее широко используемым на практике графическим описанием алгоритмов является использование блок-схем. Несомненное достоинство блок схем – наглядность и простота записи алгоритма.
Каждому действию алгоритма соответствует геометрическая фигура (блочный символ). Перечень наиболее часто употребляемых символов приведен в таблице:
Название символа | Обозначение и пример заполнения | Пояснения |
Пуск-останов | Начало, завершение алгоритма или подпрограммы | |
Ввод-вывод данных | Ввод исходных данных или вывод результатов | |
Процесс | Внутри прямоугольника записывается действие, например, расчетная формула | |
Решение | b» width=»219″ height=»65″ /> | Проверка условия, в зависимости от которого меняется направление выполнения алгоритма |
Модификация | Организация цикла | |
Предопределенный процесс | Использование ранее созданных подпрограмм | |
Комментарий | Пояснения |
Если условие выполняется, то есть a>b, то следующим выполняется действие по стрелке «Да». Если условие не выполняется, то осуществляется переход по стрелке «Нет».
В качестве примера графического способа описания алгоритмов с помощью блок-схем запишем алгоритм нахождения площади прямоугольника:
Внутри каждого блока записывается соответствующее действие. Последовательность выполнения задается соединительной линией со стрелочкой.
Последовательность выполнения сверху вниз и слева направо принята за основную.
Если в алгоритме не нарушается основная последовательность, то стрелочки можно не указывать. В остальных случаях последовательность выполнения блоков обозначается стрелочкой обязательно. В нашем примере основная последовательность выполнения – сверху вниз.
Программный способ записи алгоритмов
Способ записи алгоритмов с помощью блок-схем нагляден и точен для понимания сути алгоритма, тем не менее, алгоритм предназначен для исполнения на компьютере, а язык блок-схем компьютер не воспринимает. Поэтому алгоритм должен быть записан на языке, понятном компьютеру с абсолютно точной и однозначной записью команд.
Таким образом, алгоритм должен быть записан на каком-то промежуточном языке, с точными и однозначными правилами и отличном от естественного языка и языка блок-схем, но понятном компьютеру. Такой язык принято называть языком программирования.
Программный способ записи алгоритма – это запись алгоритма на языке программирования, позволяющем на основе строго определенных правил формировать последовательность предписаний, однозначно отражающих смысл и содержание алгоритма, с целью его последующего исполнения на компьютере.
Запись алгоритма на языке программирования называется компьютерной программой.
Формы записи алгоритмов. Виды алгоритмов
Урок 20. Информатика 4 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Формы записи алгоритмов. Виды алгоритмов»
Привет, ребята. На прошлом уроке мы узнали, что такое алгоритм и какими свойствами он обладает. Сегодня мы поговорим о формах записи алгоритма и видах алгоритмов.
На примере задачи, в которой надо найти периметр треугольника, создадим две формы записи алгоритма.
Давайте составим таблицу, в которой будет 2 столбца и 2 строки. В первой строке первого столбца запишем: текстовая форма записи алгоритма.
Во второй строке первого столбца запишем алгоритм, как мы делали это на прошлом уроке, но внесём и некоторые изменения.
Все алгоритмы начинаются с команды «начало», её мы и запишем первой. Затем записываем уже известный нам алгоритм. Команда «начало» не нумеруется.
Первое действие: измерить длину стороны a треугольника.
Второе действие: измерить длину стороны b треугольника.
Третье действие: измерить длину стороны c треугольника.
Четвёртое действие: найти сумму длин всех сторон треугольника.
Добавим ещё одно действие алгоритма.
Пятое действие: записать результат на носителе.
Все алгоритмы заканчиваются командой «конец». Его и пишем самым последним. Как и «начало», команда «конец» тоже не нумеруется.
Вот мы и создали текстовую форму записи алгоритма.
В первой строке второго столбца запишем: графическая форма записи алгоритма (блок-схема).
Но прежде, чем её записать, надо разобраться, что такое блок-схема.
Блок-схема – это описание команд (шагов, инструкций), составляющих алгоритм. Каждый шаг описывается с помощью геометрических фигур, которые называются блоками. Один блок описывает один шаг. Весь алгоритм описывается схемой, которая состоит из блоков. А блоки соединены между собой стрелками, которые указывают порядок выполнения команд.
Как мы сказала ранее, все алгоритмы начинаются с команды «начало» и заканчиваются командой «конец». Эти команды оформляются одинаковыми блоками – прямоугольники с закруглёнными углами. Внутри блока пишем «начало» или «конец». Только стрелочка из блока команды «начало» идёт вниз к следующему блоку, а у блока «конец» стрелочка приходит сверху, из предыдущего блока.
Блоки ввода и вывода данных оформляются в форме параллелограмма. В блоке ввода данных записываются данные, необходимые для выполнения алгоритма, например, измерить длину треугольника, измерить ширину прямоугольника. Блок вывода данных служит для вывода результата работы алгоритма, например, вывести площадь треугольника.
Блок для команды выполнения действия изображается в виде прямоугольника. В нём мы записываем, например, найти произведение сторон вычислить сумму 2 чисел, залить в чайник воду.
Есть ещё и блок с командой проверки условия. Он изображается в виде ромба, в нём записывается условие, например, чётное ли число, если в чайнике вода. Из блока выходят вправо и влево две стрелки, которые подписаны «Да» или «Нет». Если условие выполняется, то следует перейти к следующему блоку с командой по стрелке перехода с названием «Да», если условие не выполняется, то переходим к следующему блоку с командой по стрелке перехода с названием «Нет».
Ну что же, перейдём к графической форме записи алгоритма. Смотрим на текстовую форму и выбираем, какой блок нам использовать.
Начало алгоритма записываем в прямоугольный блок с закруглёнными углами. Из него выходит стрелочка вниз. Дальше идут 3 действия, в которых мы измеряем длины сторон треугольника, значит, и блоков будет тоже 3. Это действия, которые нам нужны для того, чтобы по формуле найти периметр треугольника, значит, это будут входные данные и оформляем мы их в форме параллелограмма. Из каждого блока вниз идёт стрелка перехода.
Четвёртый шаг – это выполнение действия, значит, его мы изображаем в форме прямоугольника. И не забываем стрелку вниз.
Пятое действие, как вы, надеюсь, догадались, это вывод результата, и его мы оформляем в форме параллелограмма. Рисуем стрелочку вниз.
Последний блок – это конец алгоритма, его, как и начало, изображаем в форме прямоугольника с закруглёнными углами.
Посмотрите на нашу таблицу. В ней записан один и тот же алгоритм, только формы записи разные.
Алгоритм может быть представлен в виде текста – это текстовая форма, или в виде блок-схемы – это графическая форма.
Посмотрите на блок-схему, в ней наглядно видно, что все шаги выполняются последовательно, один за другим. Такой алгоритм называется линейным.
Как вы думаете, есть ли ещё какие-то виды алгоритмов?
Чтобы ответить на этот вопрос, рассмотрим ещё одну задачу.
Петя предложил Алисе загадать двузначное число. И попросил: «Если это двузначное число заканчивается на цифру 5, то прибавь к нему 10 и назови число. Если задуманное число не заканчивается на цифру 5, то из него вычти 3 и назови число».
Вы заметили, что в условии этой задачи есть такие слова, как «если…, то …»?
Если в задаче есть слова «если…, то …», то алгоритм решения такой задачи называют алгоритмом с ветвлением.
В чём же особенность такого алгоритма?
Дело в том, что для того, чтобы решить такую задачу, необходимо сделать выбор:
· Если задуманное число заканчивается на цифру 5, то необходимо выполнить одно действие.
· Если задуманное число не заканчивается на цифру 5, выполнить другое действие.
Давайте представим описание последовательности действий Алисы в форме блок-схемы.
Изображаем блок «Начало». От него идёт стрелка перехода вниз к блоку ввода данных «Задумай двузначное число» в форме параллелограмма. От этого блока идёт стрелка перехода к блоку с командой проверки условия «Заканчивается ли число на цифру 5». Он изображается в виде ромба. От него влево идёт стрелка перехода с пометкой «Да» к блоку выполнения действия «Прибавь 10». И от этого блока вниз идёт стрелка перехода к блоку вывода данных «Назови результат сложения» в форме параллелограмма. Вернёмся к блоку с командой проверки условия. Вправо от него идёт стрелка перехода с пометкой «Нет» к блоку выполнения действия «Вычти 3». И от этого блока вниз идёт стрелка перехода к блоку вывода данных «Назови результат вычитания» в форме параллелограмма. Теперь от блоков вывода данных ведём вниз линии, которые переходят в общую стрелку перехода к блоку «Конец».
Теперь мы наглядно можем увидеть, как быстро решить задачу с условием.
Алгоритм с ветвлением содержит блок выбора, в котором есть условие, один вход и два выхода: «Да» и «Нет».
Давайте проверим, как хорошо вы усвоили новую тему. Выполните следующие задания.
Первое задание. Расположите в правильном порядке обозначение блок-схемы и его значение.
Проверьте, правильно ли вы выполнили задание.
Второе задание. Вставьте пропущенные слова.
Справились? Проверьте, правильно ли вы выполнили задание.
Ну что же, повторим самое главное, что мы сегодня узнали.
Существует две формы записи алгоритмов: текстовая и графическая в виде блок-схемы.
Блок-схема – это описание команд (шагов, инструкций), составляющих алгоритм.
Текстовая форма даёт более подробную информацию, а графическая – более наглядную.
Линейный алгоритм – это алгоритм, в котором шаги (инструкции) выполняются последовательно, один за другим.
Алгоритм с ветвлением – это алгоритм, который содержит блок с условием, один вход и два выхода: «Да» и «Нет».
Ну а мы с вами прощаемся. До свидания. До новых встреч.
Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки
7.1. Что такое алгоритм?
Понятие алгоритма такое же основополагающее для информатики, как и понятие информации. Именно поэтому важно в нем разобраться.
Название «алгоритм» произошло от латинской формы имени величайшего среднеазиатского математика Мухаммеда ибн Муса ал-Хорезми (Alhorithmi), жившего в 783850 гг. В своей книге «Об индийском счете» он изложил правила записи натуральных чисел с помощью арабских цифр и правила действий над ними «столбиком», знакомые теперь каждому школьнику. В XII веке эта книга была переведена на латынь и получила широкое распространение в Европе.
Человек ежедневно встречается с необходимостью следовать тем или иным правилам, выполнять различные инструкции и указания. Например, переходя через дорогу на перекрестке без светофора надо сначала посмотреть направо. Если машин нет, то перейти полдороги, а если машины есть, ждать, пока они пройдут, затем перейти полдороги. После этого посмотреть налево и, если машин нет, то перейти дорогу до конца, а если машины есть, ждать, пока они пройдут, а затем перейти дорогу до конца.
В математике для решения типовых задач мы используем определенные правила, описывающие последовательности действий. Например, правила сложения дробных чисел, решения квадратных уравнений и т. д. Обычно любые инструкции и правила представляют собой последовательность действий, которые необходимо выполнить в определенном порядке. Для решения задачи надо знать, что дано, что следует получить и какие действия и в каком порядке следует для этого выполнить. Предписание, определяющее порядок выполнения действий над данными с целью получения искомых результатов, и есть алгоритм.
Алгоpитм заранее заданное понятное и точное пpедписание возможному исполнителю совеpшить определенную последовательность действий для получения решения задачи за конечное число шагов. |
Это не определение в математическом смысле слова, а, скорее, описание интуитивного понятия алгоритма, раскрывающее его сущность.
Понятие алгоритма является не только одним из главных понятий математики, но одним из главных понятий современной науки. Более того, с наступлением эры информатики алгоритмы становятся одним из важнейших факторов цивилизации [56].
7.2. Что такое «Исполнитель алгоритма»?
Исполнитель алгоритма это некоторая абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом. |
Отказы исполнителя возникают, если команда вызывается пpи недопустимом для нее состоянии сpеды.
Обычно исполнитель ничего не знает о цели алгоpитма. Он выполняет все полученные команды, не задавая вопросов «почему» и «зачем». |
В информатике универсальным исполнителем алгоритмов является компьютер.
7.3. Какими свойствами обладают алгоpитмы?
Основные свойства алгоритмов следующие:
1. Понятность для исполнителя исполнитель алгоритма должен понимать, как его выполнять. Иными словами, имея алгоритм и произвольный вариант исходных данных, исполнитель должен знать, как надо действовать для выполнения этого алгоритма.
2. Дискpетность (прерывность, раздельность) алгоpитм должен пpедставлять пpоцесс pешения задачи как последовательное выполнение пpостых (или pанее опpеделенных) шагов (этапов).
3. Опpеделенность каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит механический хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.
4. Pезультативность (или конечность) состоит в том, что за конечное число шагов алгоpитм либо должен пpиводить к pешению задачи, либо после конечного числа шагов останавливаться из-за невозможности получить решение с выдачей соответствующего сообщения, либо неограниченно продолжаться в течение времени, отведенного для исполнения алгоритма, с выдачей промежуточных результатов.
5. Массовость означает, что алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.
7.4. В какой форме записываются алгоритмы?
7.5. Что такое словесный способ записи алгоритмов?
Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке. |
Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел (алгоритм Эвклида).
Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью этого алгоритма наибольший общий делитель чисел 125 и 75.
7.6. Что такое графический способ записи алгоритмов?
Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.
При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. |
Блок «процесс» применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.
Блок «решение» используется для обозначения переходов управления по условию. В каждом блоке «решение» должны быть указаны вопрос, условие или сравнение, которые он определяет.
Блок «модификация» используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.
Блок «предопределенный процесс» используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.
7.7. Что такое псевдокод?
Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов. |
Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой строны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.
Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.
Примером псевдокода является школьный алгоритмический язык в русской нотации (школьный АЯ), описанный в учебнике А.Г. Кушниренко и др. «Основы информатики и вычислительной техники», 1991. Этот язык в дальнейшем мы будем называть просто «алгоритмический язык».
7.8. Как записываются алгоритмы на школьном алгоритмическом языке?
Основные служебные слова
алг (алгоритм) | сим (символьный) | дано | для | да |
арг (аргумент) | лит (литерный) | надо | от | нет |
рез (результат) | лог (логический) | если | до | при |
нач (начало) | таб (таблица) | то | знач | выбор |
кон (конец) | нц (начало цикла) | иначе | и | ввод |
цел (целый) | кц (конец цикла) | все | или | вывод |
вещ (вещественный) | длин (длина) | пока | не | утв |
Общий вид алгоритма: |
Примеры предложений алг:
алг Объем и площадь цилиндра ( арг вещ R, H, рез вещ V, S )
алг Корни КвУр ( арг вещ а, b, c, рез вещ x1, x2, рез лит t )
алг Исключить элемент ( арг цел N, арг рез вещ таб А[1:N] )
алг Диагональ ( арг цел N, арг цел таб A[1:N, 1:N], рез лит Otvet )
Предложения дано и надо не обязательны. В них рекомендуется записывать утверждения, описывающие состояние среды исполнителя алгоритма, например:
Команды школьного АЯ
Команды если и выбор. Применяют для организации ветвлений.
Команды для и пока. Применяют для организации циклов.
Пример записи алгоритма на школьном АЯ
7.9. Что такое базовые алгоритмические структуры?
Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл. |
Характерной особенностью базовых структур является наличие в них одного входа и одного выхода.
7.10. Какие циклы называют итерационными?
На каждом шаге вычислений происходит последовательное приближение к искомому результату и проверка условия достижения последнего.
Пример. Составить алгоритм вычисления бесконечной суммы
с заданной точностью (для данной знакочередующейся бесконечной суммы требуемая точность будет достигнута, когда очередное слагаемое станет по абсолютной величине меньше ).
Вычисление сумм типичная циклическая задача. Особенностью же нашей конкретной задачи является то, что число слагаемых (а, следовательно, и число повторений тела цикла) заранее неизвестно. Поэтому выполнение цикла должно завершиться в момент достижения требуемой точности.
При составлении алгоритма нужно учесть, что знаки слагаемых чередуются и степень числа х в числителях слагаемых возрастает.
Сравните эти два подхода по числу операций.
Алгоритм на школьном АЯ | Блок-схема алгоритма |
Пример вложенных циклов пока
Вычислить произведение тех элементов заданной матрицы A(10,10), которые расположены на пересечении четных строк и четных столбцов.
7.12. Чем отличается программный способ записи алгоритмов от других?
При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд. Вместе с тем такая запись точна настолько, что позволяет человеку понять суть дела и исполнить алгоритм.
Однако на практике в качестве исполнителей алгоритмов используются специальные автоматы компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на понятном ему языке. И здесь на первый план выдвигается необходимость точной записи команд, не оставляющей места для произвольного толкования их исполнителем.
Следовательно, язык для записи алгоритмов должен быть формализован. Такой язык принято называть языком программирования, а запись алгоритма на этом языке программой для компьютера.
7.13.Что такое уровень языка программирования?
В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.
Любой алгоритм, как мы знаем, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования чем меньше детализация, тем выше уровень языка.
7.14. Какие у машинных языков достоинства и недостатки?
Каждый компьютер имеет свой машинный язык, то есть свою совокупность машинных команд, которая отличается количеством адресов в команде, назначением информации, задаваемой в адресах, набором операций, которые может выполнить машина и др.
При программировании на машинном языке программист может держать под своим контролем каждую команду и каждую ячейку памяти, использовать все возможности имеющихся машинных операций.
Поэтому в случае, когда нужно иметь эффективную программу, в максимальной степени учитывающую специфику конкретного компьютера, вместо машинных языков используют близкие к ним машинно-ориентированные языки (ассемблеры).
7.15. Что такое язык ассемблера?
Язык ассемблера это машинно-зависимый язык низкого уровня, в котором короткие мнемонические имена соответствуют отдельным машинным командам. Используется для представления в удобочитаемой форме программ, записанных в машинном коде. |
Программы, написанные на языке ассемблера, требуют значительно меньшего объема памяти и времени выполнения. Знание программистом языка ассемблера и машинного кода дает ему понимание архитектуры машины. Несмотря на то, что большинство специалистов в области программного обеспечения разрабатывают программы на языках высокого уровня, таких, как Object Pascal или C, наиболее мощное и эффективное программное обеспечение полностью или частично написано на языке ассемблера.
Языки высокого уровня были разработаны для того, чтобы освободить программиста от учета технических особенностей конкретных компьютеров, их архитектуры. В противоположность этому, язык ассемблера разработан с целью учесть конкретную специфику процессора. Сдедовательно, для того, чтобы написать программу на языке ассемблера для конкретного компьютера, важно знать его архитектуру [57].
Перевод программы с языка ассемблера на машинный язык осуществляется специальной программой, которая называется ассемблером и является, по сути, простейшим транслятором.
7.16. В чем преимущества алгоритмических языков перед машинными?
7.17. Какие компоненты образуют алгоритмический язык?
Алгоритмический язык (как и любой другой язык) образуют три его составляющие: алфавит, синтаксис и семантика. |
Алфавит это фиксированный для данного языка набор основных символов, т.е. «букв алфавита», из которых должен состоять любой текст на этом языке никакие другие символы в тексте не допускаются.
Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций, семантика устанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке.
7.18. Какие понятия используют алгоритмические языки?
Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу (конструкцию) и определяемые ею свойства программных объектов или процесса обработки данных.
Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия |
Основными понятиями в алгоритмических языках обычно являются следующие.
1. Имена (идентификаторы) употpебляются для обозначения объектов пpогpаммы (пеpеменных, массивов, функций и дp.).
Выражения записываются в виде линейных последовательностей символов (без подстрочных и надстрочных символов, «многоэтажных» дробей и т.д.), что позволяет вводить их в компьютер, последовательно нажимая на соответствующие клавиши клавиатуры.
Операторы подpазделяются на исполняемые и неисполняемые. Неисполняемые опеpатоpы пpедназначены для описания данных и стpуктуpы пpогpаммы, а исполняемые для выполнения pазличных действий (напpимеp, опеpатоp пpисваивания, опеpатоpы ввода и вывода, условный оператор, операторы цикла, оператор процедуры и дp.).
7.19. Что такое стандартная функция?
При решении различных задач с помощью компьютера бывает необходимо вычислить логарифм или модуль числа, синус угла и т.д.
Таблица стандартных функций школьного алгоритмического языка
Название и математическое обозначение функции | Указатель функции | |
Абсолютная величина (модуль) | | х | | abs(x) |
Корень квадратный | sqrt(x) | |
Натуральный логарифм | ln x | ln(x) |
Десятичный логарифм | lg x | lg(x) |
Экспонента (степень числа е |
Каждый язык программирования имеет свой набор стандартных функций.
7.20. Как записываются арифметические выражения?
Примеры записи арифметических выражений
Типичные ошибки в записи выражений:
5x + 1 a + sin x ((a + b)/c**3 | Пропущен знак умножения между 5 и х Аргумент x функции sin x не заключен в скобки Не хватает закрывающей скобки |
7.21. Как записываются логические выражения?
В записи логических выражений помимо арифметических операций сложения, вычитания, умножения, деления и возведения в степень используются операции отношения (больше), >= (больше или равно), = (равно), <> (не равно), а также логические операции и, или, не.
Примеры записи логических выражений, истинных при выполнении указанных условий.
7.22. Упражнения
7.1. Запишите по правилам алгоритмического языка выражения:
a) | e) |
б) | ж) |
в) | з) |
г) | и) |
д) | к) |
[ Ответ ]
7.2. Запишите в обычной математической форме арифметические выражения:
а) a / b ** 2; б) a+b/c+1; в) 1/a*b/c; г) a**b**c/2; д) (a**b)**c/2; е) a/b/c/d*p*q; ж) x**y**z/a/b; з) 4/3*3.14*r**3; и) b/sqrt(a*a+b); к) d*c/2/R+a**3; | л) 5*arctg(x)-arctg(y)/4; м) lg(u*(1/3)+sqrt(v)+z); н) ln(y*(-sqrt(abs(x)))); о) abs(x**(y/x)-(y/x)**(1/3)); п) sqrt((x1-x2)**2+(y1-y2)**2); р) exp(abs(x-y))*(tg(z)**2+1)**x; c) lg(sqrt(exp(x-y))+x**abs(y)+z); т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2; у) sqrt(sin(arctg(u))**2+abs(cos(v))); ф) abs(cos(x)+cos(y))**(1+sin(y)**2); |
[ Ответ ]
7.3. Вычислите значения арифметических выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(10000);
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;
7.4. Запишите арифметические выражения, значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c>0) и полупериметром p;
Ответ: sqrt(p*(p-a)*(p-b)*(p-c));
б) среднее арифметическое и среднее геометрическое чисел a, b, c, d;
в) расстояние от точки с координатами (x,y) до точки (0,0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра равна а);
е) радиус описанной сферы куба (длина ребра равна а);
ж) координаты точки пересечения двух прямых, заданных уравнениями
a 1 x+b 1 y+c 1 =0 и a 2 x+b 2 y+c 2 =0 (прямые не параллельны).
[ Ответ ]
7.7. Начертите на плоскости (x,y) область, в которой и только в которой истинно указанное выражение. Границу, не принадлежащую этой области, изобразите пунктиром.
а) (x =0) Ответ: | е) ((x-2)**2+y*y x/2) Ответ: |
б) (x>=0) или (y =0 г) (x+y>0) и (y =1 | ж) (x*x+y*y x*x); з) (y>=x) и (y+x>=0) и (y 1); |
[ Ответ ]
7.8. Запишите логическое выражение, которое принимает значение «истина» тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.
[ Ответ ]
в противном случае
[ Ответ ]
7.12. Постройте графики функций y(x), заданных командами если:
Решение |
[ Ответ ]
7.13. Определите значение целочисленной переменной S после выполнения операторов:
Решение
| Решение
|
[ Ответ ]
7.14. Определите значение переменной S после выполнения операторов:
Решение
| Решение
|
[ Ответ ]
7.15. Составьте алгоритмы решения задач линейной структуры (условия этих задач заимствованы из учебного пособия В.М. Заварыкина, В.Г. Житомирского и М.П. Лапчика «Основы информатики и вычислительной техники», 1989):
в) в треугольнике известны три стороны a, b и c; найти радиус описанной окружности и угол A (в градусах), используя формулы: где
г) в правильной треугольной пирамиде известны сторона основания a и угол A (в градусах) наклона боковой грани к плоскости основания; найти объем и площадь полной поверхности пирамиды, используя формулы:
V=S ocн · H/2; | |
где |
д) в усеченном конусе известны радиусы оснований R и r и угол A (в радианах) наклона образующей к поверхности большего основания; найти объем и площадь боковой поверхности конуса, используя формулы:
где |
7.16. Составьте алгоритм решения задач развлетвляющейся структуры:
а) определить, является ли треугольник с заданными сторонами a, b, c равнобедренным;
Решение:
б) определить количество положительных чисел среди заданных чисел a, b и c;
в) меньшее из двух заданных неравных чисел увеличить вдвое, а большее оставить без изменения;
г) числа a и b катеты одного прямоугольного треугольника, а c и d другого; определить, являются ли эти треугольники подобными;
д) даны три точки на плоскости; определить, какая из них ближе к началу координат;
е) определить, принадлежит ли заданная точка (x, y) плоской фигуре, являющейся кольцом с центром в начале координат, с внутренним радиусом r1 и внешним радиусом r2 ;
ж) упорядочить по возрастанию последовательность трех чисел a, b и c.
[ Ответ ]