Энергонезависимая память (англ. Non Volatile Random Access Memory, NVRAM ) — подгруппа более общего класса энергонезависимых запоминающих устройств; разница заключается в том, что в отличие от жестких дисков, устройства NVRAM предлагают прямой доступ. [источник не указан 371 день]
В более общем смысле, энергонезависимая память — любое устройство компьютерной памяти, или его часть, сохраняющее данные вне зависимости от подачи питающего напряжения. Однако подпадающие под это определение носители информации, ПЗУ, ППЗУ, устройства с подвижным носителем информации (диски, ленты) и другие носят свои, более точные названия.
Поэтому термин «энергонезависимая память» чаще всего употребляется более узко, по отношению к полупроводниковым БИС запоминающих устройств, которая обычно выполняется энергозависимой, и содержимое которой при выключении обычно пропадает. Под понятие энергонезависимой памяти подпадают по сути энергозависимая память, „энергонезависимость“ которой обеспечивается применением технологией с «ускользающе малым потреблением» (например) вкупе с подпиткой от миниатюрной батарейки или SSD.
См. также
Примечания
Литература
Это заготовка статьи о компьютерах. Вы можете помочь проекту, исправив и дополнив её. Это примечание по возможности следует заменить более точным.
Полезное
Смотреть что такое «Энергонезависимая память» в других словарях:
энергонезависимая память — – часть охранки, позволяющая увеличить надежность работы сигнализации, сохраняя всю заложенную в нее информацию при перерывах питания, кроме того, предусматривает возможность использования резервного источника питания, обеспечивающего надежную… … Автомобильный словарь
энергонезависимая память — энергонезависимое ЗУ Тип памяти, в которой информация может храниться сколь угодно долго, в том числе и при отключении питающего напряжения. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией… … Справочник технического переводчика
энергонезависимая память — liekamoji atmintinė statusas T sritis automatika atitikmenys: angl. nonvolatile memory vok. nichtflüchtiger Speicher, m rus. энергонезависимая память, f pranc. mémoire non volatile, f … Automatikos terminų žodynas
Энергонезависимая память — 10. Энергонезависимая память Запоминающее устройство хранения данных, обеспечивающее сохранность информации при выключении питания Источник … Словарь-справочник терминов нормативно-технической документации
память на фазовых переходах — Энергонезависимая память, которая предлагает высокие скорости чтения и записи данных, потребляя меньшее количество энергии по сравнению с современной флэш памятью. [http://www.morepc.ru/dict/] Тематики информационные технологии в целом EN… … Справочник технического переводчика
Память на магнитных сердечниках — Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Энергонезависимая ПЗУ … Википедия
Память с изменением фазового состояния — Для термина «PCM» см. другие значения. Типы компьютерной памяти Энергозависимая DRAM (в том числе DDR SDRAM) SRAM Перспективные T RAM Z RAM TTRAM Из истории Память на линиях задержки Запоминающая электронстатическая трубка Запоминающая ЭЛТ Эн … Википедия
Память (компьютер) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память (компьютерная) — НЖМД объёмом 45 Мб 1980 х годов выпуска, и 2000 х годов выпуска Модуль оперативной памяти, вставленный в материнскую плату Компьютерная память (устройство хранения информации, запоминающее устройство) часть вычислительной машины, физическое… … Википедия
Память (значения) — Содержание 1 В психологии 2 В компьютерной технике … Википедия
Память в современных микроконтроллерах принято разделять по признаку зависимости от энергоснабжения. К энергозависимой памяти относятся технологии DRAM и SRAM, к энергонезависимой — EEPROM/Flash Это разделение существует за счет того, что DRAM/SRAM обладают гораздо лучшим быстродействием по сравнению с энергонезависимой памятью. Но что было бы, если бы существовала энергонезависимая память, не уступающая энергозависимой памяти по скорости чтения/записи и энергопотреблению? Оказывается, такие технологии существуют. Одним из представителей этого класса памяти является технология FRAM или FeRAM. За подробностями прошу под кат.
Итак, FeRAM или Ferromagnetic Random Access non-volatile Memory — тип памяти, принцип работы которого основывается на эффекте гистерезиса в сегнетоэлектрике. При приложении к ячейке электрического поля она меняет свою поляризацию, переходя на другой участок петли гистерезиса. За счет этого можно получить два хорошо различимых по энергии состояния, а это достаточно для создания памяти на основе такой ячейки. Это хорошо иллюстрируется гифками с сайта Fujitsu — одного из основных производителей FRAM.
Рис.1 Принцип работы FRAM
Для того, чтобы понять, какие преимущества это дает перед классическими видами памяти, необходимо также вспомнить основные принципы работы других видов памяти.
Принцип работы DRAM (Dynamic RAM) основан на считывании и изменении заряда конденсатора. Если конденсатор заряжен — ячейка находится в состоянии «1», если разряжен — в состоянии «0». Просто как зонтик. Для увеличения быстродействия в ячейках памяти применяются конденсаторы небольшой ёмкости, заряд с которых относительно быстро утекает. Поэтому для обеспечения сохранности информации информацию приходится регенерировать. DRAM применяется в качестве оперативной памяти на современных компьютерах из-за дешевизны (в сравнении с SRAM) и высокого быстродействия (в сравнении с дисковыми накопителями).
Рис.2 Типичная ячейка памяти DRAM
Память SRAM (Static RAM) гораздо сложнее DRAM, и поэтому гораздо дороже. Ее принцип действия основан на применении КМОП-транзисторов. При объединении нескольких транзисторов можно получить триггер — ячейку, сохраняющую определенное логическое состояние. Для этого вида памяти нет необходимости в регенерации состояний, но тем не менее в отсутствие питания данные теряются, т.е. память остается энергозависимой. Этот вид памяти быстрее DRAM. Поскольку такая память стоит гораздо дороже DRAM, ее применяют там, где требуется очень малое время отклика — в кэш-памяти процессора.
Рис.3 Шеститранзисторная ячейка SRAM
Современные Flash и EEPROM основаны на применении транзисторов с так называемым плавающим затвором. Электроны инжектируются в «карман» полупроводниковой структуры, и их наличие/отсутствие может быть зарегистрировано извне. Это и есть свойство, которое позволяет применять такие структуры в качестве памяти. Заряд из кармана хоть и утекает, но происходит это достаточно медленно (
10-20 лет), что позволяет применять EEPROM/Flash в качестве энергонезависимой памяти. Flash применяется для хранения кода программ в микроконтроллерных устройств, а также в картах памяти.
Рис.4 Транзистор с плавающим затвором
Чем же FRAM лучше этих видов памяти?
Основное преимущество FRAM перед SRAM — это энергонезависимость. При прекращении подачи питания на микросхему памяти она сохраняет свое предыдущее состояние. При это быстродействие этих видов памяти сравнимо между собой — цикл записи на FRAM занимает 150 наносекунд против 55 наносекунд в SRAM согласно сайту Fujitsu. Но FRAM обладает ограниченным (хотя и огромным — 10^13) числом циклов перезаписи, тогда как у SRAM нет таких ограничений. DRAM сильно проигрывает FRAM по энергопотреблению из-за необходимости регенерации данных. Поэтому DRAM не применяется в устройствах, чувствительных к энергопотреблению.
Тем не менее, хотя FRAM по характеристикам сравнима с SRAM, основной потенциал применения завязан на значительных преимуществах перед Flash-памятью. В первую очередь, это огромное быстродействие. Из той же ссылки на сайт Fujitsu время одного цикла записи на Flash порядка 10 микросекунд. Здесь следует упомянуть особенность применения flash-памяти — запись и стирание в ней производится достаточно большими блоками. Поэтому перезаписывать один байт во флеше — очень дорогое удовольствие как по времени, так и по энергопотреблению — нужно куда-то сохранить блок данных, изменить в нем байт, полностью стереть соответствующий участок блока и перезаписать в него обновленные данные. Здесь, кстати, еще одно преимущество FRAM — это память с произвольным доступом, а значит в ней можно менять отдельные биты, не задевая соседние. Но даже при записи больших блоков данных FRAM на порядок быстрее. Так, в контроллерах Texas Instrument запись блока размера 13 кБ занимает 10 мс в FRAM против 1 секунды в Flash (пруф). Еще один недостаток Flash — сильно ограниченное число циклов перезаписи — порядка 10^5.
Для каких же применений оптимальна память типа FRAM? Достаточно хороша FRAM в микроконтроллерах в комбинации с небольшим объёмом SRAM. Собственно, это то самое применение, которое привлекло меня к данному типу памяти. Например, компания Texas Instruments выпустила линейку FRAM-микроконтроллеров с полностью отсутствующими Flash/EEPROM. Код в них записывается в FRAM сегмент, а к данным в том же FRAM можно обращаться также, как к обычной RAM-памяти. Такое применение удобно там, где есть значительное количество данных, которое может часто переписываться. Например, портативный логгер, для которого важно энергопотребление. Можно записывать данные в FRAM в течение определенного времени, затем анализировать и, например, отправлять данные о средних величинах по беспроводному каналу. Flash память при таком использовании неудобна — она быстро посадит аккумулятор, а из-за ограниченности циклов записи через какое-то время могут появиться проблемы с поврежденными ячейками памяти. Таким образом, FRAM выгодна для low-power приложений с относительно большим объемом и высокой частотой записи в энергонезависимую память. Вообще, TI на своем сайте указывает, в каких областях по их мнению такая память наиболее удобна.
Надеюсь, мне удалось привлечь ваше внимание к этой интересной и необычной технологии, про которую, к сожалению, на Хабре/Гиктаймс практически нет никакой информации.
Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:
Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором. Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер. Энергозависимой называется память, которая стирается при выключении компьютера. Энергонезависимой называется память, которая не стирается при выключении компьютера. К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы. К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате. Внешняя память может быть с произвольным доступом и последовательным доступом. Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа. Выделяют следующие основные типы устройств памяти с произвольным доступом:
Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.
Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины.
По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.
Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.
Летучая память это компьютерное хранилище, которое хранит свои данные только при включенном устройстве. Большая часть ОЗУ (произвольный доступ Память) используется для первичного хранилища на персональных компьютерах. энергозависимая память.
Точно так же, какой тип оперативной памяти обычно самый быстрый?
SDRAM примерно на пять процентов быстрее, чем EDO RAM, и на сегодняшний день является наиболее распространенной формой для настольных компьютеров. Максимальная скорость передачи в кэш L2 составляет примерно 528 МБ / с. DDR SDRAM: синхронная двойная скорость передачи данных динамическое ОЗУ аналогична SDRAM, за исключением того, что имеет более высокую пропускную способность, что означает большую скорость.
Кроме того, является ли DRAM нестабильной? В отличие от флэш-памяти, Динамическое ОЗУ is летучий память (по сравнению с не-летучий память), так как он быстро теряет свои данные при отключении питания. Однако, Динамическое ОЗУ показывает ограниченную остаточную способность данных.
Какая память энергонезависима?
Примеры нет–энергозависимая память включить вспышку Память, только для чтения Память (ПЗУ), сегнетоэлектрическое ОЗУ, большинство типов магнитных компьютерных запоминающих устройств (например, жесткие диски, гибкие диски и магнитная лента), оптические диски, а также методы компьютерного хранения, такие как бумажная лента и перфокарты.
Что такое энергозависимая память и пример?
Летучая память это тип хранилища, содержимое которого стирается при отключении или отключении питания системы. Для пример, RAM есть летучий. Когда вы работаете с документом, он хранится в ОЗУ, и если компьютер выйдет из строя, ваша работа будет потеряна.
Ram статический или динамический?
Это делает статическая RAM значительно быстрее, чемдинамическое ОЗУ. Однако, поскольку у него больше частей,статический ячейка памяти занимает на микросхеме намного больше места, чемдинамический ячейка памяти. Следовательно статическая RAM используется для создания чувствительного к скорости кэша ЦП, в то время как динамическое ОЗУобразует большую систему Оперативная память пространстве.
Какая память энергозависима?
Летучая память это компьютерное хранилище, которое хранит свои данные только при включенном устройстве. Большая часть ОЗУ (случайный доступ Память) используется для первичного хранилища на персональных компьютерах. энергозависимая память. Летучая памятьконтрастирует с не-энергозависимая память, который не теряет удовлетворения при потере питания.
SSD энергозависимый или энергонезависимый?
SSD энергозависимый или энергонезависимый?
Для чего нужна оперативная память?
Проще говоря, назначение RAM обеспечивает быстрый доступ для чтения и записи к запоминающему устройству. Ваш компьютер использует Оперативная память для загрузки данных, потому что это намного быстрее, чем запускать те же данные непосредственно с жесткого диска.
Какой тип памяти флеш?
Что такое летучие и нелетучие?
Кеш-память непостоянна?
DRAM служит основным Память, выполняя вычисления с данными, полученными из хранилища. И DRAM, и кэш-память Он летучие воспоминания которые теряют их содержимое при выключении питания. Кэш-память, который также является типом произвольного доступа Память, обновлять не нужно.
Какой тип памяти DRAM?
Динамический произвольный доступ Память (Динамическое ОЗУ) Являетсятип памяти который обычно используется для данных или программного кода, необходимого для работы компьютерного процессора. Динамическое ОЗУ это обычное дело напишите произвольного доступа Память (RAM) используется в персональных компьютерах (ПК), рабочих станциях и серверах.
Что такое изменчивые данные?
Неустойчивые данные любой дата которые хранятся в памяти или существуют в пути, которые будут потеряны при отключении питания или выключении компьютера. Неустойчивые данные находится в реестрах, кеш-памяти и оперативной памяти (RAM). Расследование этого непостоянные данные называется «живая судебная экспертиза»
Оперативная память быстрее, чем кеш-память?
Оперативная память быстрее, чем кеш-память?
Он обеспечивает быстрее способ доступа к данным, но может быть дороже чем другие виды Памятьи хранилище на компьютере, включая жесткие диски и твердотельные накопители. ЦПУкэш-память работает от 10 до 100 раз быстрее, чем RAM, требуя всего несколько наносекунд для ответа на запрос CPU.
ПЗУ: В отличие от ОЗУ, только чтение Память(ПЗУ) является как энергонезависимой, так и постоянной формойпервичное хранилище. ПЗУ сохраняет свое содержимое, даже если устройство теряет питание. Вы не можете изменить данные на нем, а просто прочитать их.
Для чего используется Nvram?
Сокращение от энергонезависимой памяти с произвольным доступом, NVRAM это память, в которой хранятся данные независимо от того, включено питание или нет. Сегодня хороший пример NVRAM такая флеш-память используется в Прыжковый драйв.
Что такое энергонезависимое и летучее?
Какой тип памяти есть в BIOS?
BIOS Программное обеспечение хранится на энергонезависимой микросхеме ПЗУ на материнской плате. … В современных компьютерных системах BIOS содержимое хранится на флеш-памяти Память чип, чтобы содержимое можно было переписать, не снимая чип с материнской платы.
Какие примеры энергозависимой памяти?
Для того, чтобы получить пример, Оперативная память is летучий. Когда вы работаете над документом, он хранится в Оперативная память, и если компьютер потеряет питание, ваша работа будет потеряна. По этой причине вы должны сохранить свой документ в файл на другом компьютере.летучесть средний, например жесткий диск.
Какой тип памяти флеш?
Сокращение от постоянной памяти, ПЗУ это среда хранения, которая используется с компьютеры и другие электронные устройства. Как видно из названия, данные, хранящиеся в ПЗУ можно только читать. В отличие от RAM (оперативной памяти), ПЗУ является энергонезависимым, что означает, что он сохраняет свое содержимое независимо от того, есть ли у него питание.
Где хранятся изменчивые данные?
Что такое летучий? А) Враждебный человек. Б) Твердые минеральные кристаллы в расплаве. В) Газы, растворенные в магме. Г) Жидкая часть магмы.
Какая микросхема памяти быстрее?
Что такое ПЗУ в компьютере?
Сокращение от постоянной памяти, ПЗУ это носитель данных, который используется с компьютеры и другие электронные устройства. В отличие от RAM (оперативной памяти), ПЗУ является энергонезависимым, что означает, что он сохраняет свое содержимое независимо от того, есть ли у него питание.
Что такое ПЗУ в компьютере?
Какой тип компьютерной памяти теряет свое содержимое при отключении питания?
летучий Память, в отличие от энергонезависимых Память, Является память компьютера что требует мощностью поддерживать что собой представляет хранимая информация; он сохраняет его содержание пока включен, но когда электричество прерывается, что собой представляет сохраненные данные быстро теряются. Летучий Память имеет несколько применений, в том числе в качестве основного хранилища.
Почему флеш-память считается энергонезависимой?
Неустойчиво ли DRAM?
В отличие от флэш-памяти, Динамическое ОЗУ is летучийпамять (по сравнению с не-летучий память), так как он быстро теряет свои данные при отключении питания. Однако, Динамическое ОЗУ демонстрирует ограниченную остаточную способность данных. Динамическое ОЗУ обычно принимает форму интегрированной микросхемы, которая может состоять из десятков и миллиардовДинамическое ОЗУ ячейки памяти.
Какой тип памяти есть в BIOS?
BIOS Программное обеспечение хранится на энергонезависимой микросхеме ПЗУ на материнской плате. … В современных компьютерных системахBIOS содержимое хранится на флеш-памяти Память чип, чтобы содержимое можно было переписать, не снимая чип с материнской платы.
Что такое летучая викторина?
Что называется нелетучими отходами?
В химии термин энергонезависимый относится к веществу, которое не легко испаряется в недосуществующих условиях газа. Другими словами, энергонезависимый materia вызывает низкое давление пара и медленную скорость испарения.
Какова цель ПЗУ?
Что такое летучий? А) Враждебный человек. Б) Твердые минеральные кристаллы в расплаве. В) Газы, растворенные в магме. Г) Жидкая часть магмы.