Что относится к биосферному уровню примеры

Химия, Биология, подготовка к ГИА и ЕГЭ

Уровни организации живой природы

Выделяют 8 уровней.

Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.

Каждый следующий уровень обязательно содержит в себе все предыдущие.

Давайте разберем каждый уровень подробно.

8 уровней организации живой природы

1. Молекулярный уровень организации живой природы

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

Поэтому именно он лег в основу классификации Живой природы на царства — какое питательное вещество является основным у организма: у животных — белок, у грибов — хитин, у растений это- углеводы.

Науки, которые изучают живые организмы именно на этом уровене:

Что относится к биосферному уровню примеры

2. Клеточный уровень организации живой природы

Включает в себя предыдущий — молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

Науки, изучающие клеточный уровень организации:

Что относится к биосферному уровню примеры

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня — молекулярный и клеточный.

Этот уровень можно назвать «многоклеточным» — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

4. Органный (ударение на первый слог) уровень организации жизни

Тканевый и органный уровни организации — изучают науки:

Что относится к биосферному уровню примеры

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный, клеточный, тканевый уровни и органный.

На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

Характеристики этого уровня:

Что относится к биосферному уровню примеры

Что относится к биосферному уровню примеры

6. Популяционно-видовой уровень организации жизни

Включает молекулярный, клеточный, тканевый уровни, органный и организменный.

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

Науки, изучающие этот уровень:

Что относится к биосферному уровню примеры

7. Биогеоценотический уровень организации жизни

На этом уровне уже учитывается почти все:

Наука, изучающая этот уровень — Экология

Ну и последний уровень — высший!

8. Биосферный уровень организации живой природы

Он включает в себя:

Источник

Уровни организации жизни

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Рис. 1. Молекулярно-генетический уровень

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.

4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).

7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).

8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют «живые вещества», т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение «биокосные вещества», образовавшиеся в результате жизнедеятельности живых организмов и «косных» веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Источник

вопрос по биологии.придумйте пример к каждому уровню организма

Молекулярный уровень составляет предмет молекулярной биологии, изучающей строение белков, их функции как ферментов или элементов цитоскелета, роль нуклеиновых к-т в хранении, репликации и реализации генетич. информации, т. е. процессы синтеза ДНК, РНК и белков.

клеточный; биология клетки (цитология) — один из осн. разделов совр. биологии, включает проблемы морфологич. организаций клетки, специализации клеток в ходе развития, функций клеточной мембраны, механизмов и регуляции деления клетки.

На организменном уровне изучают особь и свойственные ей как целому черты строения, физиол. процессы, в т. ч. дифференцировку, механизмы адаптации (акклимации) и поведения, в частности — нейрогумоарльные механизмы регуляции, функции ЦНС.

На органотканевом уровне осн. проблемы заключаются в изучении особенностей строения и функций отд. органов и составляющих их тканей.

На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, проблемы сохранения исчезающих видов, динамики генетич. состава популяций, действие факторов микроэволюции и т. д.

На биосферном уровне совр. биология решает глобальные проблемы, напр. определение интенсивности образования свободного кислорода растит, покровом Земли или изменения концентрации углекислого газа в атмосфере, связанного с деятельностью человека.

На биогеоценотическом и биоценотическом уровнях ведущими являются проблемы взаимоотношений организмов в биоценозах, условия, определяющие их численность и продуктивность биоценозов, устойчивость последних и роль влияний человека на сохранение биоценозов и их комплексов.

Источник

Урок Бесплатно Уровни организации живых систем

Введение

Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).

То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного- клеточным уровнем.

Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.

Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.

Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.

Выделяют три большие группы уровней организации:

Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.

Организменный (или онтогенетический) уровень- это сам организм.

Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.

Что относится к биосферному уровню примеры

Мы с вами изучим основные уровни организации живых систем:

Суборганизменные уровни организации

1. Молекулярный уровень организации жизни

Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.

Что относится к биосферному уровню примеры

Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.

Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.

Что относится к биосферному уровню примеры

Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).

Основные процессы молекулярного уровня:

Науки, ведущие исследования на этом уровне:

У меня есть дополнительная информация к этой части урока!

Что относится к биосферному уровню примеры

Атомный (элементарный) уровень: на нем рассматривается роль отдельных химических элементов в живом организме (Fe, F, I, Se, Na).

Субклеточный уровень образован органеллами клетки (митохондриями, хлоропластами, рибосомами, лизосомами), ядром, хромосомами и другими субклеточными структурами.

На уровне субклеточных (надмолекулярных) структур ученые изучают строение и функции органелл, а также других включений клетки

2. Клеточный уровень организации жизни

Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).

Клетка- это структурная и функциональная единица всего живого.

Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».

Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).

Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.

Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.

Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико, и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:

Что относится к биосферному уровню примеры

Вне клетки жизни нет. Такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.

У меня есть дополнительная информация к этой части урока!

Что относится к биосферному уровню примеры

Стволовыми клетками называются незрелые клетки особого типа, способные развиваться во все виды клеток, составляющих различные ткани организма.

Стволовые клетки в организме находятся как бы в спящем состоянии, у них замедлен обмен веществ.

Они являются резервом организма в случае возникновения различных стрессовых ситуаций (травмы, ранения, болезни).

После «активации» они служат «материалом» для восстановления (регенерации) пораженных органов или тканей.

Также стволовые клетки необходимы для непрерывно происходящей в организме физиологической регенерации (замена старых клеток на новые).

Ученые полагают, что из стволовых клеток в отдаленной перспективе можно будет выращивать практически любую ткань, что может помочь лечению многих заболеваний.

Что относится к биосферному уровню примеры

Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.

Основные процессы клеточного уровня:

Науки, ведущие исследования на клеточном уровне:

3. Тканевый уровень организации жизни

Единицей этого уровня является ткань.

Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.

Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.

В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.

Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.

У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.

Что относится к биосферному уровню примеры

У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.

На этом уровне происходит специализация клеток.

Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».

Компоненты тканевого уровня: клетки и межклеточная жидкость.

Основные процессы тканевого уровня: процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).

Наука, ведущая исследования на тканевом уровне:

4. Органный уровень организации жизни

Составляют этот уровень органы многоклеточных организмов.

Что относится к биосферному уровню примеры

Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.

Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.

У меня есть дополнительная информация к этой части урока!

Что относится к биосферному уровню примеры

У простейших организмов, конечно же, нет тканей и органов, так как они состоят всего из одной клетки, но функции пищеварения, дыхания, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл в их клетках.

Организменный уровень организации жизни

Все живое на Земле существует в виде обособленных субъектов- особей, которые формируют организменный уровень.

При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия, простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным и организменным уровнем организации.

Что относится к биосферному уровню примеры

Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.

Основные процессы органного уровня:

Науки, ведущие исследования на органном уровне:

У меня есть дополнительная информация к этой части урока!

Что относится к биосферному уровню примеры

Биометрия- система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и так далее).

К примеру, в Китае активно используется технология распознавания лиц в различных областях, начиная от оплаты покупок до общественной безопасности.

Что относится к биосферному уровню примеры

Пройти тест и получить оценку можно после входа или регистрации

Источник

Биосферный уровень

Что относится к биосферному уровню примеры Что относится к биосферному уровню примеры Что относится к биосферному уровню примеры Что относится к биосферному уровню примеры

Что относится к биосферному уровню примеры

Что относится к биосферному уровню примеры

Биосферный уровень — наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете.

Биосфера— это живое вещество планеты (совокупность всех живых организмов планеты, включая человека) и преобразованная им окружающая среда.

Биотический обмен веществ — это фактор, который объединяет все другие уровни организации жизни в одну биосферу.

На биосферном уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций — важнейшая задача биологии. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

В системе современного научного мировоззрения понятие биосферы занимает ключевое место. Сам термин «биосфера» появился в 1875 г. Он был введен австрийским геологом и палеонтологом Э. Зюссом для обозначения самостоятельной сферы нашей плане-

ты, в которой существует жизнь. Зюсс дал определение биосферы как совокупности организмов, ограниченной в пространстве и времени и обитающей на поверхности Земли. Но он не придавал значения среде обитания этих организмов.

Тем не менее, Зюсс не был первооткрывателем, так как разработка учения о биосфере имеет довольно длинную предысторию. Одним из первых вопрос о влиянии живых организмов на геологические процессы рассмотрел Ж. Б. Ламарк в книге «Гидрогеология» (1802). В частности, Ламарк говорил о том, что все вещества, находящиеся на поверхности Земли и образующие ее кору, сформировались благодаря деятельности живых организмов. Затем был грандиозный многотомный труд А. Гумбольдта «Космос» (первая книга вышла в 1845 г.), в котором множество фактов доказывало взаимодействие живых организмов с теми земными оболочками, в которые они проникают. Поэтому Гумбольдт рассматривал в качестве единой оболочки Земли, целостной системы атмосферу, гидросферу и сушу с обитающими в них живыми организмами.

Но о геологической роли биосферы, ее зависимости от планетарных факторов Земли, ее строении и функциях еще не было сказано ничего. Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Его концепция складывалась постепенно, от первой студенческой работы «Об изменении почвы степей грызунами» к «Живому веществу», «Биосфере» и «Биогеохимическим очеркам». Итоги его размышлений были подведены в работах «Химическое строение биосферы Земли» и «Философские мысли натуралиста», над которыми он работал в последние десятилетия своей жизни. Именно Вернадскому удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле, именно он открыл и изучил биогеохимические функции живого вещества.

Ключевым понятием в концепции Вернадского стало понятие живого вещества, под которым ученый понимал совокупность всех живых организмов нашей планеты, включая человека. В состав живого вещества он включал также часть окружающей его внешней среды, необходимой для поддержания нормальной жизнедеятельности организмов; выделения и части, теряемые организмами; умершие организмы, а также органические смеси, находящиеся вне организмов. Важнейшим отличием живого вещества от косной материи Вернадский считал молекулярную дисимметрию живого, открытую в свое время Пастером (молекулярную хиральность согласно современной терминологии). Используя это понятие, Вернадскому удалось доказать, что не только окружающая среда влияет на живые организмы, но и жизнь способна действенно формировать

среду своего обитания. Действительно, на уровне отдельного организма или биоценоза влияние жизни на окружающую среду проследить очень сложно. Но, введя новое понятие, Вернадский вышел на качественно новый уровень анализа жизни и живого — биосферный уровень.

Биосфера, согласно Вернадскому, — это живое вещество планеты (совокупность всех живых организмов Земли) и преобразованная им среда обитания (косное вещество, абиотические элементы), в которую входят гидросфера, нижняя часть атмосферы и верхняя часть земной коры. Таким образом, это не биологическое, геологическое или географическое понятие, а фундаментальное понятие биогеохимии — новой науки, созданной Вернадским для изучения геохимических процессов, проходящих в биосфере при участии живых организмов. В новой науке биосферой стали называть один из основных структурных компонентов организованности нашей планеты и околоземного космического пространства. Это сфера, в которой осуществляются биоэнергетические процессы и обмен веществ вследствие деятельности жизни.

Что относится к биосферному уровню примеры

Благодаря новому подходу Вернадский исследовал жизнь как могучую геологическую силу, действенно формирующую облик Земли. Живое вещество стало тем звеном, которое соединило историю химических элементов с эволюцией биосферы. Введение нового понятия также позволяло поставить и решить вопрос о механизмах геологической активности живого вещества, источниках энергии для этого.

Живое вещество и косное вещество постоянно взаимодействуют в биосфере Земли — в непрерывном круговороте химических элементов и энергии. Вернадский писал о биогенном токе атомов, который вызывается живым веществом и выражается в постоянных процессах дыхания, питания и размножения. Например, круговорот азота связан с превращением в нитраты молекулярного азота атмосферы. Нитраты усваиваются растениями и в составе их белков попадают к животным. После смерти растений и животных их тела оказываются в почве, где гнилостные бактерии разлагают органические останки до аммиака, который затем окисляется в азотную кислоту.

На Земле идет непрерывное обновление биомассы (за 7—8 лет), при этом в круговорот вовлекаются абиотические элементы биосферы. Например, воды Мирового океана прошли через биогенный цикл, связанный с фотосинтезом, не менее 300 раз, свободный кислород атмосферы обновлялся не менее 1 млн. раз.

Также Вернадский отмечал, что биогенная миграция химических элементов в биосфере стремится к своему максимальному проявлению, а эволюция видов ведет к появлению новых видов, увеличивающих биогенную миграцию атомов.

Вернадский также впервые отметил, что живое вещество стремится к максимальному заселению среды обитания, причем количество живого вещества в биосфере остается стабильным на протяжении целых геологических эпох. Эта величина не менялась, по крайней мере, последние 60 млн. лет. Количество видов при этом также оставалось неизменным. Если в каком-то месте Земли количество видов убавляется, то в другом месте — прибавляется. В наши дни исчезновение огромного числа видов растений и животных связано поэтому с распространением человека и его неразумной деятельностью по преобразованию природы. Население Земли растет за счет гибели других видов.

Благодаря биогенной миграции атомов живое вещество выполняет свои геохимические функции. Современная наука классифицирует их по пяти категориям:

концентрационная функция — выражается в накоплении определенных химических элементов как внутри, так и вне живых организмов благодаря их деятельности. Результатом стало появление запасов полезных ископаемых (известняки, нефть, газ, уголь и т.д.);

транспортная функция — тесно связана с концентрационной функцией, так как живые организмы переносят нужные им химические элементы, которые затем накапливаются в местах их обитания;

энергетическая функция — обеспечивает потоки энергии, пронизывающие биосферу, что дает возможность осуществлять все биогеохимические функции живого вещества. Важнейшую роль в этом процессе играют фотосинтезирующие растения, преобразующие солнечную энергию в биогеохимическую энергию живого вещества биосферы. Эта энергия тратится на все грандиозные преобразования облика нашей планеты;

деструктивная функция — связана с разрушением и переработкой органических останков, в ходе которых накопленные организмами вещества возвращаются в природные циклы, идет круговорот веществ в природе;

средообразующая функция — проявляется в преобразовании окружающей среды под действием живого вещества. Мы можем смело утверждать, что весь современный облик Земли — состав атмосферы, гидросферы, верхнего слоя литосферы, большая часть полезных ископаемых, климат — являются результатом действия Жизни. Так, зеленые растения обеспечивают Землю кислородом и накапливают энергию, микроорганизмы участвуют в минерализации органических веществ, образовании ряда горных пород и почвообразовании.

При всей грандиозности задач, которые решают живое вещество и биосфера Земли, сама биосфера (по сравнению с другими геосферами) представляет собой очень тонкую пленку. Сегодня принято считать, что в атмосфере микробная жизнь имеет место примерно до высоты 20—22 км над земной поверхностью, а наличие жизни в глубоких океанических впадинах опускает эту границу до 8—11 км ниже уровня моря. Углубление жизни в земную кору много меньше, и микроорганизмы обнаружены при глубинном бурении и в пластовых водах не глубже 2—3 км. В состав биосферы Вернадский включал:

• биогенное вещество — вещество, создаваемое и перерабатываемое живыми организмами (каменный уголь, нефть, газ и т.д.);

• косное вещество, образованное в процессах без участия живого вещества;

• вещества, создаваемые живыми организмами и косными процессами, и их динамическое равновесие;

• вещества, находящиеся в процессе радиоактивного распада;

• рассеянные атомы, выделяющиеся из земного вещества под влиянием космических излучений;

• вещество космического происхождения, включающее отдельные атомы и молекулы, проникающие на Землю из космоса.

Разумеется, жизнь в биосфере распространена неравномерно, существуют так называемые сгущения и разрежения жизни. Наиболее густо населены нижние слои атмосферы (50 м от земной поверхности), освещенные слои гидросферы и верхние слои литосферы (почва). Также следует отметить, что тропические области заселены намного плотнее, чем пустыни или ледяные поля Арктики и Антарктики. Глубже в земную кору, в океан, а также выше в атмосферу количество живого вещества уменьшается. Таким образом, эта тончайшая пленка жизни покрывает абсолютно всю Землю, не оставляя ни одного места на нашей планете, где бы не было жизни. При этом нет резкой границы между биосферой и окружающими ее земными оболочками.

Долгое время идеи Вернадского замалчивались, и вновь к ним вернулись лишь в середине 1970-х гг. Во многом это произошло благодаря трудам российского биолога Г.А. Заварзина, который доказал, что основным фактором становления и функционирования биосферы были и остаются многосторонние трофические связи. Они установились не менее чем 3,4—3,5 млрд. лет назад и с тех пор определяют характер и масштабы круговорота элементов в оболочках Земли.

Литература для самостоятельного изучения

1. Афанасьев В.Г. Мир живого: системность, эволюция и управление. М., 1986.

2. Барг О.А. Живое в едином мировом процессе. Пермь, 1993.

3. Борзенко В.Г., Северцов А.В. Теоретическая биология: размышление о предмете. М., 1980.

4. Вернадский В. И. Биосфера и ноосфера // Живое вещество и биосфера. М., 1994.

5. Вернадский В.И. Химическое строение биосферы Земли и ее окружение. М., 1987.

6. Дубинин Н.П. Очерки о генетике. М., 1985.

7. Кемп П., Армс К. Введение в биологию. М., 1988.

8. Кристин де Дюв. Путешествие в мир живой клетки. М., 1987.

9. Югай Г.А. Общая теория жизни. М., 1985.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *