Что относится к автоматике
Системы автоматики: системы автоматического контроля, управления и регулирования
Все элементы автоматики по характеру и объему выполняемых операций подразделяют на системы: автоматического контроля, автоматического управления, автоматического регулирования.
Система автоматического контроля (рис. 1) предназначена для контроля за ходом какого-либо процесса. Такая система включает датчик В, усилитель А, принимающий сигнал от датчика и передающий его после усиления на специальный элемент Р, который реализует заключительную операцию автоматического контроля — представление контролируемой величины в форме, удобной для наблюдения или регистрации.
Рис. 1. Система автоматического контроля
Независимо от количества элементов системы автоматического контроля являются разомкнутыми и сигнал в них проходит только в одном направлении — от объекта контроля Е к исполнительному элементу Р.
Система автоматического управления предназначена для частичного или полного (без участия человека) управления объектом либо технологическим процессом. Эти системы широко применяют для автоматизации, например, процессов пуска, регулирования частоты вращения и реверсирования электродвигателей в электроприводах всех назначений.
Усилитель А, не изменяющий принципа действия системы, необходим для ее практической реализации, когда мощность сигнала, поступающего от элемента сравнения UN, недостаточна для воздействия на рабочий орган L.
Рис. 2. Система автоматического регулирования
Рис. 3. Автоматическое регулирование по отклонению
Наряду с задающим воздействием на систему могут влиять различные дестабилизирующие факторы Q, которые вызывают отклонение регулируемой величины от заданной. Воздействия дестабилизирующих факторов, один из которых условно обозначен на рисунке буквой Q, могут проявляться в различных местах системы и, как принято говорить, поступать по различным каналам. Так, например, изменение температуры окружающей среды приводит к изменению сопротивления в цепи обмотки возбуждения, что в свою очередь влияет на напряжение генератора.
Однако где бы ни возникали воздействия Q (со стороны потребителя — ток нагрузки, вследствие изменения параметров цепи возбуждения), система регулирования будет реагировать на вызванное ими отклонение регулируемой величины от заданной.
В системе, использующей только такой принцип регулирования (рис. 4 и 5), фактическое значение регулируемой величины не учитывается. Принимают во внимание только одно возмущающее воздействие — ток нагрузки I н. В соответствии с изменением тока нагрузки происходит изменение магнитодвижущей силы (мдс) обмотки возбуждения L2, являющейся измерительным элементом данной системы. Изменение мдс этой обмотки приводит к соответствующему изменению напряжения на выводах генератора.
Рис. 4. Автоматическое регулирование по возмущению
Рис. 5. Принципиальная схема системы автоматики
Система, осуществляющая комбинированное регулирование (по отклонению и возмущению), может быть получена объединением ранее рассмотренных систем в одну (рис. 6)
Рис. 6. Система автоматики комбинированного регулирования
замкнутойтой не имеет замкнутой цепи воздействия по регулируемой величине, поэтому ее называют разомкнутой.
Системы автоматики по принципу действия подразделяют на статические и астатические. В статических системах регулируемая величина не имеет строго постоянного значения и с увеличением нагрузки изменяется на некоторую величину, называемую ошибкой регулирования.
В астатических системах статизм равен нулю и поэтому зависимость регулируемой величины от нагрузки представляет собой линию, параллельную оси нагрузки (рис. 7,6).
Рис. 8. Астатическая система автоматики
Однако существуют системы, называемые дискретными, в которых воздействие на рабочий орган осуществляется с перерывами, например система регулирования температуры подошвы утюга, в которой регулирующее воздействие может принимать только одно из двух фиксированных значений при непрерывном изменении регулируемой величины — температуры.
Рис. 9. Структурная схема системы телемеханики
Телесигнализация, как и телеизмерение, выдает оператору исходные данные для принятия решения по управлению ОК или служит для выработки управляющих воздействий в системах телеуправления и телерегулировки. Основное отличие этих систем от предыдущих заключается в том, что в первой из них используются дискретные сигналы типа «включить», «выключить», а во второй — непрерывные, подобно обычным системам регулирования.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Автоматика
Полезное
Смотреть что такое «Автоматика» в других словарях:
Автоматика — общее название разнообразных механических, электрических, пневматических, гидравлических и электронных устройств применяемых для автоматизации технологических процессов. Промышленная автоматика Пожарная автоматика Релейная защита и автоматика… … Википедия
АВТОМАТИКА — 1) область теоретических и прикладных знаний об автоматически действующих устройствах и системах.2) Совокупность механизмов и устройств, действующих автоматически … Большой Энциклопедический словарь
АВТОМАТИКА — АВТОМАТИКА, и, жен. 1. Отрасль науки и техники, разрабатывающая теорию и методы автоматизации производственных процессов. 2. Совокупность механизмов, приспособлений, действующих автоматически. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова.… … Толковый словарь Ожегова
автоматика — сущ., кол во синонимов: 10 • гидроавтоматика (1) • нефтеавтоматика (1) • п … Словарь синонимов
автоматика — Совокупность механизмов, приборов и устройств, действующих автоматически в соответствии с заданным алгоритмом для достижения поставленной цели. [РД 01.120.00 КТН 228 06] [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и… … Справочник технического переводчика
автоматика — automation, automatics, automatic equipment, automated mechanisms, automatic machinary (devices) *Automatik 1)Сукупність механізмів і пристроїв, що діють без безпосередньої участі людини. 2) Галузь науки й техніки, що стосується автоматів. Термін … Гірничий енциклопедичний словник
Автоматика — – 1) отрасль науки, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; 2) совокупность методов и технических средств, исключающих участие человека при выполнении технологического… … Энциклопедия терминов, определений и пояснений строительных материалов
АВТОМАТИКА — 4.1. АВТОМАТИКА 1. Отрасль науки и техники, охватывающая теорию автоматического управления, а также принципы построения автоматических систем и образующих их технических средств 2. Совокупность механизмов, устройств и систем, функционирующих… … Словарь-справочник терминов нормативно-технической документации
автоматика — отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле – совокупность методов и технических средств, исключающих участие человека при выполнении… … Энциклопедия техники
автоматика — и; ж. 1. Отрасль науки и техники, разрабатывающая методы и средства автоматизации производственных процессов. 2. Совокупность устройств, приспособлений, действующих автоматически. * * * автоматика 1) область теоретических и прикладных знаний об… … Энциклопедический словарь
АВТОМАТИКА
автоматика ж. 1) Отрасль науки и техники, связанная с разработкой теории и методов автоматизации в сфере производства или управления. 2) Совокупность механизмов и устройств, действующих автоматически, без непосредственного участия человека.
автоматика
ж.
1. (отрасль науки и техники) automation
2. (механизмы) automated mechanisms pl., automatic machinery devices
[Краткий словарь метрологических терминов и определений. http:// ПРОМПРИБОР.рф]
Автоматика – раздел науки и техники, занимающийся изучением, исследованием, разработкой и использованием автоматически действующих устройств и систем.
[Автоматизация процессов. Электронный курс. Национальная учебная программа по электронике и автоматике. Влади Пурро, Алексей Седжакин, Таллиннский Политехник. 2013]
Автоматика — называется отрасль науки, изучающая теорию и принципы построения систем управления производственными процессами, действующих без непосредственного участия человека. Как область науки, автоматизация возникла на базе теории автоматического регулирования, основы которой были заложены в работах Дж. К. Максвелла (1868), И. А. Вышеградского (1872 —1878), А. Стодолы (1898) и др. В самостоятельную научно-техническую дисциплину оформилась в 1940-х гг.
[Селевцов Л.И. Автоматизация технологических процессов: учебник для студ. учреждений сред. проф. образования / Л. И. Селевцов, А. Л. Селевцов. — 3-е изд., стер. — М.: Издательский центр «Академия», 2014 — 352 с.]
Автоматика — отрасль теоретических и прикладных знаний об устройствах и системах, действующих без прямого участия человека;
[Словарь терминов по автоматизации. Аврора-ИТ. (Электронный ресурс). Режим доступа: http:// avrora-it.ru›content/, свободный.]
Автоматика —
[Терминологический словарь по автоматике, информатике и вычислительной технике: Справ. пособие для СПТУ/В. В. Зотов, Ю. Н. Маслов, А. Е. Пядочкин и др.- М.: Высш. шк., 1989.- 191 с: ил.]
Автоматика (automation, automatics) —
1) Отрасль техники, решающая задачи построения систем управления процессами и оборудованием, действующих без непосредственного участия человека;
2) Область теоретических и прикладных знаний об автоматически действующих устройствах и системах.
[Электрический привод. Термины и определения / под ред. С.К. Козырева. — М.: Издательство МЭИ, 2015. — 96 с.]
Системы автоматики. Виды и особенности применения
Отрасль техники и науки, которая объединяет теорию и методы проектирования системы автоматики, и устройств, способных выполнять свою основную работу без человека, называется автоматикой.
Классификация и особенности применения
По назначению и характеру выполняемых работ системы автоматики разделяют:
В автоматическую систему контроля входят распределители, блоки питания, стабилизаторы и другие компоненты. Независимо от числа компонентов такие системы разомкнутые, а сигнал идет в одном направлении: от контролируемого объекта Е к исполнительному компоненту Р.
Для создания стабильности регулируемого параметра применяют различные принципы и методы работы.
При регулировке по отклонению элемент UN сравнивает действительное напряжение Uф с заданной величиной Uз, определяемой элементом ЕN. После этого на выходе UN возникает сигнал ΔU = Uз-Uф, который прямо зависит от отклонения напряжения. Сигнал протекает через усилитель А, далее идет на рабочий орган L. Из-за колебания напряжения на обмотке, изменяется действительное напряжение генератора, который изменяет его отклонение.
Усилитель, который не меняет принцип работы системы, нужен для ее реализации, в то время, когда не хватает мощности сигнала для действия на рабочий орган.
Вместе с задающим действием на систему влияют факторы, образующие отклонения регулируемого параметра. Изменение температуры внешней среды изменяет сопротивление в схеме обмотки возбуждения. Это оказывает влияние на напряжение генератора. Независимо от того, где будут возникать действия Q, система регулирования среагирует на возникшее отклонение регулируемого параметра.
Регулирование по возмущению нуждается в специальных компонентах, которые измеряют действие Q и влияют на рабочий орган. В системе, действующей по такому принципу, значение регулируемого параметра не берется в расчет. Учитывают только нагрузочный ток Iн. Изменение магнитодвижущей силы возбуждающей обмотки, которая является измерительным компонентом системы, происходит при изменении нагрузочного тока. Это приводит к изменению выходного напряжения генератора.
Комбинированная система образуется объединением разных систем в одну.
По принципу действия системы автоматики делятся:
Сервомотор М начинает работать и двигать ползунок реостата, когда возникает сигнал на входе. Ползунок двигается, пока сигнал не обнулится. Система такого типа имеет отличие в том, что для поддержки новой величины тока возбуждения не нужен сигнал на выходе усилителя. Такое отличие и дает возможность избавиться от статизма.
По виду цепи передачи сигналов:
По количеству обратных связей:
По управлению:
По связи выходного и входного параметра:
По виду источника энергии:
Телемеханические системы автоматики
Если компоненты системы находятся далеко между собой, то для соединения применяется передатчик, приемник и каналы связи. Поэтому эти системы называются телемеханическими.
Они состоят из управляющего пункта с оператором, пунктов контроля с объектами контроля А1-Ап, каналов передачи L1А-LпА, которые соединяют управляющий пункт Е1М с контрольными пунктами Е2А-Еп. В системе телемеханики по каналам передачи можно передавать многие виды информации.
Система телеизмерения
Если информация передается только о контрольном объекте, то системы называют телеизмерением. В них сигналы от датчика передаются на управляющий пункт Е1М, преобразуются в показания цифровых или стрелочных измерительных приборов. При этом передача информации может происходить непрерывно или с перерывами.
Система телесигнализации
Если от датчика поступает сигнал на пункт управления только о том, включен объект контроля или выключен, такие системы автоматики называются системами телесигнализации.
Телесигнализация выдает данные по управлению объектом контроля, либо служит информацией для решения по управлению в системах телерегулировки и телеуправления. Главным отличием этих систем от других заключается в непрерывности и дискретности сигналов.
Классификация элементов автоматики
Лекция 3
Элементы автоматики чрезвычайно разнообразны по выполняемым функциям, конструкции, принципу действия, характеристикам, физической природе преобразуемых сигналов и т.д.
1) В зависимости от того, как элементы получают энергию, необходимую для преобразования входных сигналов, они делятся на пассивные и активные.
Пассивные элементы автоматики – это элементы, у которых входное воздействие (сигнал хвх) преобразуется в выходное воздействие (сигнал хвых) за счёт энергии входного сигнала (например, редуктор).
Активные элементы автоматикидля преобразования входного сигнала используют энергию от вспомогательного источника (например, двигатель, усилитель).
2) В зависимости от энергии на входе и выходе элементы автоматики подразделяются на:
3) По выполняемым функциям в системах регулирования и управления элементы автоматики подразделяются на:
— вспомогательные элементы и т.д.
Датчики воспринимают поступающую на их вход информацию об управляемой величине объекта управления и преобразуют её в форму, удобную для дальнейшего использования в устройстве автоматического управления. Большинство датчиков преобразует входной неэлектрический сигнал хвх в выходной электрический сигнал хвых. В зависимости от вида входного неэлектрического сигнала хвх выделяют:
— датчики механических величин (датчики перемещения, датчики скорости, датчики ускорения и т.д.);
— датчики тепловых величин (датчики температуры);
— датчики оптических величин (датчики излучения) и т.д.
Часто применяются датчики с двойным преобразованием сигнала, например, входной неэлектрический сигнал хвх сначала преобразуется в перемещение, а затем перемещение преобразуется в выходной электрический сигнал хвых.
Так, например, в системе автоматического регулирования высоты полёта самолёта, изменение барометрического давления, возникающее при изменении высоты полёта, преобразуется сначала в механическое перемещение центра анероидной коробки, а затем в напряжение, измеряемое с помощью потенциометра.
Усилители— это элементы автоматики, которые осуществляют количественное преобразование, усиление мощности входного сигнала хвх. В некоторых случаях одновременно с количественным преобразованием, усилители осуществляют и качественное преобразование (например, преобразование постоянного тока в переменный, в пневматических и гидравлических усилителях осуществляется преобразование перемещения в изменение давления).
В зависимости от вида энергии, получаемой усилителем, последние делятся на:
Наибольшее распространение получили электрические усилители, имеющие высокую чувствительность, большой коэффициент усиления и удобные в эксплуатации.
Исполнительные устройства относятся к элементам автоматики, создающим управляющие воздействия на объект управления. Они изменяют состояние или положение регулирующего органа объекта таким образом, чтобы регулируемый параметр соответствовал заданному значению. К исполнительным устройствам, создающим управляющее воздействие в виде силы или вращающего момента, относятся силовые электромагниты, электромагнитные муфты, двигатели.
Двигатели в зависимости от вида применяемой для работы энергии могут быть:
В качестве исполнительных устройств, изменяющих состояние регулирующего органа, могут использоваться усилители или реле.
Реле – это элементы автоматики, у которых изменение выходного сигнала (хвых) происходит дискретно (т.е. скачкообразно) при достижении входным сигналом (хвх) определённого значения, вызывающего срабатывание реле.
Это значение входного сигнала называется уровнем срабатывания реле.
Мощность входного сигнала (хвх), вызывающего срабатывание реле, значительно меньше мощности, которой реле может управлять. Поэтому реле используется и как усилительный, и как исполнительный элемент.
Реле часто используются и как автоматически управляемые коммутаторы сигналов в многоканальных системах сбора и передачи данных, в которых обрабатывается информация от десятков, сотен и даже тысяч датчиков. Они применяются также в системах контроля, сигнализации, блокировки и защиты.
Вычислительные элементы в устройствах автоматического управления осуществляют математические преобразования с поступающими на их вход сигналами. Эти операции осуществляются с целью обеспечения заданного алгоритма работы системы.
В простейшем случае вычислительные элементы выполняют отдельные математические операции, такие как алгебраическое суммирование, дифференцирование, интегрирование, логическое сложение, логическое умножение и т.д.
В замкнутых САУ необходимо осуществлять суммирование сигнала датчика и сигнала обратной связи. В корректирующих устройствах используется дифференцирование и интегрирование сигналов. Для выполнения этих операций главным образом используются вычислительные элементы аналогового типа.
В более сложных случаях в качестве вычислительного элемента может использоваться микропроцессор, специализированные и унифицированные ЭВМ цифрового и аналогового типов или комплекс этих машин. Такие задачи автоматического управления, как оптимизация, создание адаптивных (приспосабливающихся) САУ, использование алгоритмов управления, основанных на вероятностных и статистических методах обработки сигналов, невозможно осуществить без применения ЭВМ.
Согласующие и вспомогательные элементы включаются в устройство автоматического управления для улучшения его параметров, расширения функциональных возможностей основных элементов и т.д.
В качестве согласующих элементов часто используют трансформаторы, редукторы, позволяющие согласовать параметры исполнительного элемента с параметрами объекта управления.
В системах автоматического управления, в которых качестве вычислительного элемента используется микропроцессор или ЭВМ, часто возникает необходимость согласования ЭВМ с датчиками информации и исполнительными элементами аналогового типа, широко применяемыми в автоматике. Для этой цели на входе ЭВМ устанавливаются аналого-цифровые преобразователи (АЦП). Аналого-цифровые преобразователи преобразуют механический сигнал (перемещения, скорости и т.д.) или электрический сигнал (напряжения, силы тока, сопротивления и т.д.), получаемый от аналоговых датчиков, в дискретный кодовый сигнал, способный восприниматься ЭВМ.
Управляющее воздействие в таких системах получают в дискретной форме как результат обработки в ЭВМ поступившей информации.
Если в устройстве автоматического управления в качестве исполнительного элемента используются электродвигатели постоянного или переменного тока, электромагнитные муфты, усилители мощности постоянного или переменного тока и т.д., то возникает потребность обратного преобразования дискретного сигнала ЭВМ в аналоговый сигнал, воспринимаемый исполнительным элементом.
Эта задача решается с помощью цифро-аналоговых преобразователей (ЦАП).
Они преобразуют кодовый сигнал, полученный от ЭВМ, в перемещение, напряжение, ток, частоту и т.д.
Вспомогательные элементы автоматики – это стабилизаторы напряжения или тока, коммутаторы и распределители, генераторы напряжения специальной формы («пила»), формирователи импульсов, индикаторные и регистрирующие приборы, сигнальные и защитные устройства.
Эти элементы автоматики, не являясь принципиально необходимыми для работы устройства автоматического управления, в то же время позволяют увеличить точность и стабильность его работы, облегчают наладку и эксплуатацию, расширяют возможности использования этого устройства при создании САУ.