Что определяет свойства материала
Основные свойства материалов и методы их определения
Свойства материалов можно разбить на следующие основные группы:
2) тепловые (температурные);
3) химические (сопротивление металлов коррозии);
5) электрические и магнитные.
Для конструкционных материалов особенно важны механические свойства: прочность, твердость, выносливость и др. Количественные характеристики механических нагрузок определяют в результате испытаний. Многообразие условий службы материалов обуславливает проведение большого числа механических испытаний
Испытание на растяжение. Этот вид испытанийотносится к числу наиболее распространенных статических испытаний, позволяющих определить основные характеристики механических свойств металла. К преимуществам такого испытания относятся сравнительная простота эксперимента и возможность получить растяжение в чистом виде. Для испытания используются стандартные образцы с рабочей частью в виде цилиндра (цилиндрические образцы) или стержни с прямоугольным сечением (плоские образцы). Размеры образцов устанавливает ГОСТ 1497-84.
Перед испытанием образец закрепляют в вертикальном положении в зажимы испытательной машины. В процессе испытания диаграммный механизм машины непрерывно регистрирует так называемую первичную (машинную) диаграмму растяжения в координатах: нагрузка (P) – абсолютное удлинение образца (). По диаграмме растяжения определяют следующие характеристики механических свойств металла.
Прочность – это свойство материала сопротивляться деформации или разрушению. Показатели прочности характеризуются не прилагаемой нагрузкой P, а удельной величиной – условным напряжением σ, определяемым отношением нагрузки к площади начального поперечного сечения образца Fо (σ = P/Fо).
Предел пропорциональности (σпц) – это напряжение, при котором отступление от линейной зависимости достигает некоторого значения, установленного техническими условиями (в качестве технического условия обычно берут следующее: при напряжении σпц тангенс угла наклона, образованного касательной к кривой деформации с осью нагрузок, увеличивается на 50 % по сравнению с линейным участком).
Предел текучести (σт) – это напряжение, при котором материал деформируется (течет) без заметного изменения нагрузки.
У большинства материалов диаграмма растяжения не имеет площадки текучести. В этом случае задаются допуском на остаточную деформацию образца и определяют условный предел текучести.
Предел прочности (временное сопротивление, σB) – это напряжение, соответствующее наибольшей нагрузке.
Пластичностью называют свойство материалов необратимо изменять свою форму и размеры под действием внешней нагрузки. Под ее действием материал деформируется. В качестве основного показателя пластичности обычно принимают относительное остаточное удлинение δ,равное остаточному удлинению
к первоначальной длине образца .
Испытание на твердость. Это самый простой вид механических испытаний.
Твердость – это свойство материала оказывать сопротивление деформации или хрупкому разрушению при внедрении индентора в его поверхность. Под инденторомпонимается твердосплавный наконечник (в виде шара, пирамиды или конуса), твердость которого существенно превосходит твердость испытуемого материала.
Наибольшее распространение получили статические методы испытания на твердость при вдавливании индентора: методы Бринелля, Виккерса и Роквелла.
При испытании на твердость по методу Бринелля (ГОСТ 9012-59) в поверхность материала вдавливается твердосплавный шарик диаметром D под действием нагрузки P и после снятия нагрузки измеряется диаметр отпечатка d. Число твердости по Бринеллю (HB) определяется как отношение нагрузки P к площади поверхности сферического отпечатка M. Твердость по Бринеллю обозначается символом HB с указанием числа твердости. При этом размерность (кгс/мм²) не ставится, например 200 HB.
При испытании на твердость по методу Виккерса (ГОСТ 2999-75) в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине α = 136º. После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV определяется как отношение нагрузки P к площади пирамидального отпечатка M. Твердость по Виккерсу обозначается символом HV, при этом размерность не ставится (кгс/мм²).
Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.
При испытании на твердость по методу Роквелла (ГОСТ 9013-59) в поверхность материала вдавливается алмазный конус с углом 120º при вершине или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Число твердости, определенное методом Роквелла, обозначается символом HR и выражается в условных безразмерных единицах.
Испытание на усталость. Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Металл, подверженный такому нагружению, может разрушаться при более низких напряжениях, чем при однократном плавном нагружении. Процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушений, называют усталостью. Свойство материалов противостоять усталости называют выносливостью.
Схема испытаний на усталость следующая. Циклическое напряжение осуществляется подвешенным на подшипнике неподвижным грузом при вращении консольно закрепленного образца. В результате у образца верхняя поверхность работает на растяжении (σmax), а нижняя – на сжатии (σmin). За один оборот образца каждая поверхность проходит полный цикл напряжения, от максимального до минимального.
Методика проведения испытаний материалов на усталость регламентирована ГОСТ 25.502-79. В результате таких испытаний снимают кривую (диаграмму) усталости – это зависимость между максимальным приложенным напряжением и числом циклов. Обычно диаграммы принимают одну из форм: а) имеющих предел выносливости; б) не имеющих предела выносливости.
У части материалов кривая усталости переходит в горизонталь: у сталей это обычно наблюдается после 10 7 циклов нагружения, для цветных металлов это значение составляет обычно 10 8 циклов. Для этих материалов сопротивление усталости характеризуется пределом выносливости (σR), под которым понимают максимальное напряжение, которое не вызывает разрушение образца при любом числе циклов (физический предел выносливости).
У других материалов кривая усталости не переходит в горизонталь, а продолжает снижаться. Для таких материалов обычно задают базу испытаний (Nn) – предварительно заданная наибольшая продолжительность испытаний на усталость. Под пределом ограниченной выносливости σRN понимают максимальное напряжение, при котором материал может выдержать Nn циклов.
ОСНОВНЫЕ СВОЙСТВА МАТЕРИАЛОВ
Эти свойства характеризуют его строение или отношение к физическим процессам окружающей среды. К ним относят массу, истинную и среднюю плотность, пористость, водопоглощение и водоотдачу, влажность, гигроскопичность, водопроницаемость, морозостойкость, воздухо-, газо- и паропроницаемость, теплопроводность и теплоемкость, огнестойкость и огнеупорность.
Однако большинство материалов имеют поры, поэтому у них средняя плотность всегда ниже истинной плотности:
Материал | Плотность, кг/м 3 | |
истинная | средняя | |
Сталь | 7850-7900 | 7800-7850 |
Гранит | 2700-2800 | 2600-2700 |
Известняк (плотный) | 2400-2600 | 1800-2400 |
Песок | 2500-2600 | 1450-1700 |
Цемент | 3000-3100 | 900-1300 |
Керамический кирпич | 2600-2700 | 1600-1900 |
Бетон тяжелый | 2600-2900 | 1800-2500 |
Сосна | 1500-1550 | 450-600 |
Пенопласты | 1000-1200 | 20-100 |
Лишь у плотных материалов (стали, стекла, битума и некоторых других) истинная и средняя плотности равны, т.к. объем внутренних пор у них весьма мал.
т.е. она колеблется в значительных пределах.
На свойства материала оказывают влияние также величина пор и их характер (мелкие или крупные, замкнутые или сообщающиеся).
Плотность и пористость прямо влияют на такие характеристики материалов как водопоглощение, водопроницаемость, морозостойкость, прочность, теплопроводность и др.
· пористые теплоизоляционные материалы, например, торфоплиты >100%.
Насыщение материалов водой отрицательно влияет на их основные свойства: увеличивает плотность и теплопроводность, снижает прочность.
Влагоотдача— свойство материала отдавать влагу окружающей атмосфере. Определяется по количеству воды (в процентах по массе или объему стандартного образца), теряемой материалом в сутки при влажности окружающего воздуха 60% и температуре 20 0 С. Вода испаряется до тех пор, пока не установится равновесие между влажностью материала и влажностью окружающего воздуха.
Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5%, обладают высокой морозостойкостью. Морозостойкость имеет большое значение для стеновых, фундаментных и кровельных материалов, систематически подвергающихся попеременному замораживанию и оттаиванию.
Если образцы в процессе испытаний не имеют следов разрушения, то степень морозостойкости устанавливается определением коэффициента морозостойкости:
Паро- и газопроницаемость характеризуется коэффициентом, который определяется количеством пара или газа в литрах, проходящего через слой материала толщиной 1м и площадью в 1 м 2 в течение одного часа при разности парциальных давлений на противоположных стенках 133,3 Па.
Теплопроводность материала зависит от многих факторов: природы материала, его строения, пористости, влажности, от средней температуры, при которой происходит передача теплоты. Материал кристаллического строения обычно более теплопроводен, чем материал аморфного строения. Если материал имеет слоистое или волокнистое строение, то теплопроводность его зависти от направления потока теплоты по отношению к волокнам, например, теплопроводность древесины вдоль волокон в два раза больше, чем поперек волокон.
Мелкопористые материалы менее теплопроводны, чем крупнопористые, даже если их пористость одинакова. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами.
Теплопроводность однородного материала зависит от величины его средней плотности. Так, с уменьшением плотности материала теплопроводность уменьшается и наоборот.
На теплопроводность материала значительное влияние оказывает его влажность: влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз больше теплопроводности воздуха.
При повышении температуры теплопроводность увеличивается.
Удельная теплоемкость, КДж/(кг· 0 С):
Теплоемкость учитывается при расчетах теплоустойчивости стен и перекрытий отапливаемых зданий, а также при расчете печей.
Несгораемые материалы под действием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются (сталь, бетон, кирпич).
Трудно сгораемые материалы под действием огня с трудом воспламеняются, тлеют или обугливаются, но после удаления источника огня их горение и тление прекращаются (древесно-цементный материал фибролит, асфальтовый бетон, некоторые виды полимерных материалов).
Сгораемые материалы под воздействием огня или высокой температуры воспламеняются и продолжают гореть после удаления источника огня (дерево, войлок, толь, рубероид).
Дата добавления: 2016-02-20 ; просмотров: 1048 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Понятие свойство материала. Классификация свойств
Классификация строительных материалов
Номенклатура материалов, применяемых в современном строительстве огромна. Чтобы легче ориентироваться в многообразии строительных материалов и изделий, чаще всего их классифицируют по назначению, исходя из условий работы материалов в сооружениях и по технологическому признаку, учитывая вид сырья, из которого получают материал, и способ изготовления (керамические, древесные, каменные, бетонные и железобетонные и т.д.).
Для архитектурного и строительного материаловедения наиболее удобна классификация по назначению: материалы условно делят на две группы: конструкционные и материалы специального назначения.
Иногда встречается разделение материалов на конструкционные, конструкционно-отделочные и отделочные, однако не совсем верно, т.к. классификация не включает огромную группу материалов, например, герметики.
Конструкционные материалы, применяемые главным образом для несущих конструкций, различают следующие:
1) природные каменные;
3) искусственные каменные, получаемые:
а) омоноличиванием с помощью вяжущих веществ (бетон, железобетон, растворы);
б) спеканием (керамические материалы и огнеупоры);
в) плавлением (стекло и ситаллы);
4) металлы (сталь, чугун, алюминий, сплавы);
7) композиционные материалы (асбестоцемент, железобетон, полимербетон, фибробетон, стеклопластик и др.).
Строительные материалы специального назначения, необходимые для защиты конструкций от вредных воздействий среды или повышения эксплуатационных свойств и создания комфорта, следующие:
3) гидроизоляционные, кровельные и герметизирующие;
7) материалы для защиты от радиационных воздействий и др.
Понятие свойство материала. Классификация свойств
Важным слагаемым, определяющим качество современной архитектуры, является качество применяемых в строительстве конструкционных и отделочных материалов и изделий. Борьба за повышение качества промышленной продукции неразрывно связана с его оценкой, управлением, контролем и аттестацией. Чтобы управлять качеством, необходимо, прежде всего, научиться его измерять.
Каждый материал обладает комплексом разнообразных свойств, определяющих область его рационального применения и возможность сочетания с другими материалами.
Свойство — способность материала определенным образом реагировать на отдельный или чаще всего действующий в совокупности с другими внешний или внутренний фактор. Действие того или другого фактора обусловлено как составом и строением материала, так и эксплуатационными условиями материала в конструкции зданий и сооружений.
Простое свойство— свойство материала (изделий), которое нельзя подразделить на другие. Например, масса материала» или «длина изделия» не могут быть представлены другими, более простыми свойствами.
Качество— сложное свойство, совокупность всех функциональных и эстетических свойств материала (изделия), обусловливающих его способность удовлетворять определенным требованиям в соответствии с его назначением.
Интегральное качество (соотношение цена/качество)— наиболее сложное свойство материала (изделия), определяемое совокупностью его качества и экономичности.
Общие свойства строительных материалов и изделий можно классифицировать на три основные группы: функциональные, эстетические и экономические. Каждая группа представляет собой сложное свойство, которое, в свою очередь, является совокупностью менее сложных свойств.
Свойства строительных материалов и изделий по их природе классифицируют на три основные группы: — физические, механические и химические.Такое деление широко применяется для изучения методов оценки свойств, для выявления закономерных связей между строением и свойствами веществ и других исследовательских и прикладных целей.
К физическим свойствамматериалов относятся:
· характеристики структур и массы (плотность, пористость, пустотность и др.);
· свойства, определяющие отношение материалов к действию воды, пара, газов (гигроскопичность, водопоглощение, водопроницаемость, влагостойкость, водостойкость, паропроницаемость, газопроницаемость и др.);
· отношение материалов к действию тепла, огня, холода, электрического тока, звуковых волн, излучений (теплопроводность, термостойкость, огнестойкость, огнеупорность, хладостойкость, электропроводность, звукоизолирующая и звукопоглощающая способность, радиационная стойкость и др.);
· отношение к комплексному действию внешней среды, например, одновременного действия воды и холода (морозостойкость) и т.п.
Для архитектора не менее важны физические свойства материалов, характеризующие их цвет, блеск, фактуру, текстуру и др.
Под механическими свойствами материалов понимают их способность сопротивляться деформированию и разрушению (в сочетании с упругим и пластическим поведением) под действием внешних сил.
К этим свойствам относятся: прочность (при сжатии, растяжении, изгибе, ударе, срезе, кручений и т.д.), твердость, упругость, деформативность, хрупкость, ударная вязкость, пластичность, текучесть, ползучесть, выносливость (усталость), истираемость и др.
Кроме этих основных групп свойств можно выделить биологические свойства строительных материалов и изделий, характеризующих их стойкость к действию грибков, микроорганизмов, насекомых и их личинок, и др. Однако все биологические процессы могут быть сведены к химическим.
Санитарно-гигиеническиехарактеристики материалов, в основном, зависят от их химического состава и оцениваются методами санитарно-химического анализа. Исключение составляет характеристика загрязняемости, которая определяется, главным образом, наличием на поверхности материала открытых пор. Санитарно-гигиенические свойства правомерно выделить в отдельную группу, однако обычно они рассматриваются в группе химических свойств.
Физические свойства материалов: описание понятия, методы определения, суть материаловедения
Определение
Важно знать и то, что физические свойства материала могут быть различными для различных его агрегатных материалов. Скажем, тепловые, электрические, механические, физические, оптические свойства вещества зависят от избранного направления в кристалле.
Наполнение термина
Физические свойства вещества включают такие как:
Вам будет интересно: Что означает многоточие в разных случаях?
А физические свойства материала представлены в основном следующим:
И физические, и химические, и технологические свойства материалов одинаково важны. Но мы разберем подробнее первую категорию. Представим характеристику самых важных физических свойств конструкционных материалов.
Плотность
Одно из важнейших свойств в материаловедении. Плотность разделяется на три категории:
Вам будет интересно: Трон Ивана Грозного: описание, откуда появился, легенды, с ним связанные
Пористость
Среди физических, технологических и механических свойств материалов не последнее место занимает и пористость. Это степень заполнения объема изделия порами.
Закрытые поры по распределению и размеру характеризуется следующим:
Пустотность
Водопроницаемость
Водопроницаемостью называется способность материала отдавать жидкость при его высушивании и поглощать воду при увлажнении.
Во время исследования физических свойств материалов нужно обратить внимание на то, что насыщение водой может проходить двумя путями: при воздействии вещества в жидком состоянии или при воздействии только его пара.
Гигроскопичность
Если материал активно притягивает своей поверхностью молекулы воды, то он называется гидрофильным. Если материал, напротив, отталкивает их от себя, то он носит имя гидрофобного. Помимо этого, отдельные гидрофильные материалы отлично растворяются в воде, в то время как гидрофобные стойко сопротивляются воздействию водных сред.
Водопоглощение
Водопоглощение будет меньше истинной пористости изделия, так как определенное количество пор в нем остается закрытыми. Поэтому оно будет изменяться от их количества, объема, степени открытости. На величину будет влиять и природа материала, его гидрофильность.
В результате насыщения материала водой остальные его физические свойства порой значительно изменяются: возрастает теплопроводность и плотность, увеличивается объем (характерно для глины, древесины), понижается прочность из-за нарушения связей между отдельными частицами.
Влагоотдача
Воздухостойкость
Воздухостойкостью называется способность материала в течение длительного времени выдерживать многократное систематическое высушивание и увлажнение без потерь своей механической плотности, а также без значительных деформаций.
Водопроницаемость
Важно отметить, что встречаются и полностью водонепроницаемые материалы. Это сталь, битум, стекло, основные разновидности пластмасс.
Морозостойкость
Важное физическое свойство в российских реалиях. Так зовется способность материала, насыщенного водой, выдерживать многократные попеременные замораживания и оттаивания без значительного уменьшения прочности, появления видимых признаков разрушения.
Соответственно, морозостойкость будет определять степень насыщения пор водой, его плотность. Морозостойкими считаются именно плотные материалы. Из пористых в эту категорию можно отнести только те, которые отличаются большим присутствие закрытым пор. Или чьи поры вода заполняет не более чем на 90 %.
Физические свойства способны представить важные способности материалов. Некоторые из них мы уже подробно разобрали в статье. Это способность выдерживать холод, многократные наполнения водой и высушивания, удерживать, впитывать, отдавать жидкость и другие важные характеристики.