Что оказывает влияние на работу ламп
Влияние отклонений напряжения на работу электроприемников
Значительное влияние напряжения сети на работу электроприемников заставляет уделять большое внимание поддержанию напряжения на зажимах потребителей, близкого к номинальному напряжению. Подводимое к потребителям напряжение является одним из качественных показателей электроэнергии.
Изменения напряжения в сети можно классифицировать следующим образом:
Отклонения напряжения в электрических сетях обусловливаются изменениями нагрузок сети, режимов работы электростанций и т. д.
Все приемники электрической энергии конструируются для работы при определенном номинальным напряжении. Отклонения напряжения от номинального на их зажимах ведет к ухудшению работы электроприемников.
Изменение основных характеристик ламп накаливания в зависимости от напряжения на их зажимах дано на рис. 1.
Приведенные кривые показывают большое влияние напряжения на работу ламп накаливания. Например, снижению напряжения на 5% соответствует уменьшение светового потока на 18%, а понижение напряжения на 10% вызывает снижение светового потока лампы более чем на 30%.
Снижение светового потока ламп приводит к уменьшению освещенности рабочего места, в результате чего уменьшается производительность труда и ухудшаются качественные показатели.
Плохое освещение рабочих мест, проходов, улиц и т. д. увеличивает количество несчастных случаев с людьми. Понижение напряжения ухудшает к. п. д. ламп накаливания. Снижение напряжения на 10% уменьшает световую отдачу лампы (лм/м/вт) на 20%.
Люминесцентные лампы менее чувствительны к отклонениям напряжения сети. Отклонения напряжения на 1 % в среднем вызывают изменение светового потока лампы на 1,25%.
У бытовых нагревательных приборов (плитки, утюги и т. п.) нагревательные элементы состоят из активных сопротивлений. Мощность, отдаваемая ими в зависимости от напряжения сети, выражается уравнением
показывающим, что снижение напряжения сети вызывает резкое уменьшение мощности, отдаваемой нагревательным прибором. Последнее приводит к значительному увеличению времени работы прибора и перерасходу электроэнергии на приготовление пищи и т. д.
Характеристики всех других бытовых электроприборов также зависят от подведенного напряжения. При изменениях напряжения на зажимах электродвигателей изменяются вращающий момент, потребляемая мощность и срок службы изоляции обмоток.
Вращающие моменты асинхронных электродвигателей пропорциональны квадрату приложенного к их зажимам напряжения. Если момент двигателя при номинальном напряжении принять за 100%, то при напряжении 90%, например, вращающий момент составит 81%. Сильное снижение напряжения может даже привести к остановке электродвигателей или невозможности пустить электродвигатель, приводящий в движение машину с тяжелыми условиями пуска (подъемники, дробилки, мельницы и т. д.). Недостаточные (вращающие моменты электродвигателей могут явиться причиной брака продукции, порчи полуфабриката и т. п.
При понижении напряжения активная мощность, потребляемая электродвигателем, уменьшается вследствие уменьшения вращающего момента и связанного с этим увеличения скольжения.
Увеличение скольжения вызывает возрастание потерь активной мощности в двигателе. При увеличении напряжения скольжение уменьшается и потребная для привода механизма мощность увеличивается. Потери активной мощности в электродвигателе уменьшаются.
Анализ показывает, что активная нагрузка от электродвигателей при изменениях напряжения, соответствующих нормальным режимам работы системы, меняется незначительно и потому может приниматься постоянной.
Изменение реактивной нагрузки электродвигателей от напряжения зависят от соотношения реактивной мощности намагничивания и реактивной мощности рассеяния двигателей. Реактивная мощность намагничивания изменяется примерно пропорционально четвертой степени напряжения. Реактивная мощность рассеяния, зависящая от тока электродвигателей, изменяется обратно пропорционально примерно второй степени напряжения.
При снижениях напряжения против номинального (до некоторой величины) реактивная нагрузка электродвигателей всегда снижается. Объясняется это тем, что реактивная мощность намагничивания, составляющая до 70% всей реактивной мощности, потребляемой электродвигателем, снижается быстрее, чем увеличивается реактивная мощность рассеяния.
Кривая 1 бумажного комбината идет очень круто. Чем меньше загрузка двигателей и чем выше коэффициент мощности их при номинальном напряжении, тем круче идет кривая зависимости потребляемой реактивной мощности от напряжения сети. Длительное снижение напряжения на 10% на зажимах электродвигателей при полной их загрузке приводит вследствие более высокой температуры обмоток к износу изоляции двигателей примерно вдвое скорее, чем при номинальном напряжении.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Онлайн журнал электрика
Статьи по электроремонту и электромонтажу
Влияние внешней среды на работу и характеристики люминесцентных ламп
Разглядим, как оказывают влияние среда, в какой работает люминесцентная лампа, и условия ее работы на ее характеристики.
К наружным факторам, влияющим на работу люминесцентных ламп, следует отнести температуру и влажность окружающего воздуха. Срок службы, световая отдача и мощность ламп зависят от метода их зажигания, числа включений лампы, формы тока, проходящего через лампу, и от всепостоянства напряжения питающей сети. Важнейшими моментами, определяющими качество люминесцентного освещения, являются пульсация светового потока, создаваемого лампами, и степень подавления радиопомех, появляющихся при зажигании и горении ламп. Температура окружающего воздуха оказывает влияние на давление паров ртути в лампе, потому что с изменением температуры воздуха изменяется температура стенок трубки. Стандартные люминесцентные лампы рассчитаны на работу при температуре окружающего воздуха 15—40° С и имеют наивысшую световую отдачу при температуре 20—25° С. Можно сделать лампы, приспособленные к работе при более низких температурах, к примеру, лампа мощностью 125 вт имеет лучшие, световые свойства в спектре температур от —15 до +10° С. При отклонении окружающей температуры от хороших значений, на которые рассчитана лампа, ее световой поток миниатюризируется. Так, при температуре стен трубки около 0°С световой поток лампы, падает до 10—15% номинального значения, а при превышении их температуры 50° С он понижается приблизительно на 0,8% на каждый ГС увеличения температуры стенок.
На световой поток лампы также оказывает влияние изменение! критерий отвода тепла от нее, которые определяются наличием либо отсутствием движения окружающего воздуха. Молвят, что лампа опасается «сквозняков».
От температуры окружающего воздуха зависят способы зажигания лампы. Напряжение зажигания лампы будет иметь малое значение при температуре стен трубки, соответственной хорошим условиям ионизации паров ртути. Если температура понижается, то перевоплощение ртути в пары замедляется, число атомов ртути в газе недостаточно для обеспечения начала разряда в лампе, необходимы дополнительные источники свободных электронных зарядов. Таким источником могут стать только атомы наполняющего трубу газа — аргона, но напряжение, при котором начинается ионизация атомов аргона, па 50% выше, чем соответственное напряжение для атомов ртути. Как следует, при низкой температуре для зажигания лампы требуется подать на нее более высочайшее напряжение. Из этого положения следует вывод, что при низких температурах окружающего воздуха лампы будут загораться с большенными затруднениями.
В связи с этим в установках внешнего освещения для обеспечения зажигания люминесцентных ламп в холодную погоду приходится прибегать к особым мерам.
Лампы помещают в стеклянные защитные рубахи либо общий колпак. Теплопотери лампы делают нужный нагрев внутреннего объема кожуха и обеспечивают зажигание ламп при низких температурах. Время от времени при особо низких температурах можно наблюдать в исходной стадии зажигания свечение только концов ламп, и после достаточного прогрева всего объема кожуха происходит зажигание лампы.
Завышенная влажность среды вызывает образование, пленки на поверхности трубки, снижающей ее поверхностное сопротивление. Изменение поверхностного сопротивления трубки оказывает влияние на напряжение зажигания лампы. При относительной влажности 75—80% напряжение зажигания имеет наибольшее значение.
С конфигурацией относительной влажности в ту либо другую сторону напряжение зажигания лампы уменьшается. Для исключения воздействия влажности на напряжение зажигания ламп они должны быть снабжены проводящей полосой или иметь особое водоотталкивающее покрытие.
Люминесцентные лампы, голубые + инвертор
Напряжение в сети, обычно, в процессе эксплуатации ламп не остается неизменным по величине и может изменяться в достаточно широких границах. Параметры люминесцентных ламп изменяются совместно с изменением напряжения в питающей сети, но в данном случае колебания напряжения меньше оказывают влияние на характеристики ламп, чем это имеет место для ламп накаливания.
Зависимо от типа (индуктивный либо емкостный) и величины балластного сопротивления изменяется электрический режим лампы при изменении напряжения в сети.
При индуктивном балласте с увеличением напряжения в сети напряжение на лампе падает, ток и мощность лампы растут, а световая отдача уменьшается. В среднем на каждый 1 % конфигурации напряжения в сети мощность, световой поток и ток меняются на 2%. При очень сильном понижении напряжения в сети, более 25% номинального, лампы не будут зажигаться вообщем.
При емкостном балласте нрав зависимости остается таковой же, как и при индуктивном балласте. Но R этом случае па каждый 1 % конфигурации напряжения в сети мощность, световой поток и ток меняются в среднем лишь на 1%.
Световой поток, излучаемый источником света, при питании его переменным током не остается неизменным, а изменяется по величине, следуя за переменами тока через лампу. В момент, когда ток, проходящий через лампу, имеет нулевое значение, равен нулю и создаваемый лампой световой поток. Как следует, световой поток лампы пульсирует с двойной частотой по отношению к частоте сети.
При освещении лампами накаливания мы не замечаем пульсации светового потока из-за термический инерционности нити накала.
Осветительные приборы для люминесцентных ламп навесные и настенно-потолочные
Люминесцентные лампы не владеют таковой инерционностью, потому прекращение тока в их приводит к незамедлительному погасанию разряда и исчезновению свечения лампы. Люминофоры владеют свойством послесвечения, т. е. в течение некого промежутка времени после прекращения их облучения ультрафиолетовым излучением они продолжают источать видимый свет, что сглаживает пульсацию светового потока лампы. Для различных типов люминофоров время и интенсивность послесвечения разные.
Интенсивность пульсации светового потока, создаваемого люминесцентными лампами, зависит также от длительности исходной и конечной пауз тока, которые в свою очередь определяются типом балласта.
При освещении передвигающихся либо крутящихся предметов пульсирующим световым потоком может появиться так именуемый стробоскопический эффект, связанный с искажением зрительного восприятия. Если, например, освещать таким пульсирующим световым потоком крутящееся с определенной угловой скоростью колесо, то при равенстве либо кратности угловой скорости вращения колеса частоте пульсации потока оно при всем этом освещении будет казаться недвижным. Если угловая скорость вращения будет меньше частоты пульсации, то нам покажется, что колесо медлительно вращается в оборотную сторону по сопоставлению с реальным направлением вращения. Таковой мираж небезопасен исходя из убеждений техники безопасности, потому что при всем этом может быть получение травм. Не считая того, пульсация светового потока влияет на эффективность зрительной работы, вызывая завышенную утомленность органа зрения. Явление стробоскопического эффекта может появиться не только лишь при наличии передвигающихся предметов в поле зрения работающего, да и при выполнении хоть какой работы, когда происходит относительное перемещение глаза и освещаемого предмета. В связи с этим при устройстве люминесцентного освещения следует принимать конструктивные меры к наибольшему понижению пульсации светового потока.
При работе люминесцентной лампы и в моменты ее зажигания излучаются электрические колебания, лежащие в спектре радиочастот, которые могут создавать радиопомехи, мешающие обычной работе радиоаппаратуры. Источником помех, идущих в окружающее место и отчасти в сеть, являются дуговой разряд в лампе, также искрение на катодах, зависящее от свойства обработки вольфрамовой спирали и хорошего сцепления спирали с оксидным покрытием. Источником помех также могут быть стартеры, в момент разрыва контактов которых появляются электрические колебания. При разработке схем включения ламп приходится принимать конструктивные меры к понижению уровня радиопомех, создаваемых лампой и ее пускорегулирующей аппаратурой.
Что оказывает влияние на работу ламп
Вопрос быстро сгорающих лампочек становится всё актуальней и очень частой причиной этого есть или нарушения при монтаже электропроводки или какие то внешние факторы. Разберемся поподробней.
Четыре основные типа лампочек освещения
2. Лампы дневного света. Они кроме того подвержены перегоранию. У них помимо прочего есть спираль. Всё что сказано повыше сможет подойти и к лампе дневного света. Также дабы лампа заработала у неё используется некоторый «стартёр», который дозволяет зажечь газ, который присутствует в пробирке лампы. Данные стартёры помимо прочего ломается. В главном действующих способов по повышению срока эксплуатации ламп дневного света нет, так ка и нет очевидных обстоятельств их перегорания не считая обстоятельств специфики технологии работы и изготовления таких устройств освещения.
3. Энергосберегающие лампы. Это аналог ламп дневного света, за тем лишь отличием, что энергосберегающие лампы имеют в собственной начинке электрические блоки и составные части. Эти источники света подвержены перегоранию из-за колебаний напряжения. И стоит заметить, что перегорают они с схожим успехов как от пониженного, но и от завышенного напряжения. Вот поэтому невозможно применять эти лампочки в приспособлениях (светильниках) с регулированием яркости. Также у данного вида ламп при определённых условиях есть необыкновенность мигать.
4. Светодиодные лампы. Это самый что ни на есть сохраняющий энергию источник света. Как не прискорбно цена этих ламп оставляет желать лучшего. Хотя стоит заметить, что данный вид ламп опасается лишь очень завышенных скачков напряжения, а другие проблемы в сети их не тревожут. Обратите на них внимание, потому что срок эксплуатации этих ламп, обозначенный изготовителем, достигает 10 лет и более.
Немного о люстрах
А именно китайские бюджетные люстры со светодиодной подсветкой, галогеновыми лампочками и соблазнительным пультом управления.
Такая начинка за малую цену, естественно рождает массу проблем, касающихся качества изделия. И на первом месте у нас перегорающие галогенки (лампочки), эта проблема — первый симптом полной поломки люстры. Причины в принципе те же — сначала из за сильных перегревов от ламп, контакты патронов теряют свою упругость (это из за качества металла контактов), когда упругость теряется, контакты слабо сжимают штырьки наших галогенок. Что приводит к плохому контакту и дальнейшему, постоянному сгоранию ламп. Со всем этим смириться можно, и лампочки в принципе не такие дорогие, можно и купить, но нас смену безобидному сгоранию ламп, приходит другая, более серьезная. В люстре после данного этапа начинает сильно нагреваться её электропроводка, а так как проводки в ней очень тонкие, они буквально тлеют. И когда приходит время оплавления изоляции, то весь пучочек проводов сплавляется между собой, тем самым вызывая короткое замыкание. В ряду случаев люстра полностью перестаёт работать, так как выходит из строя понижающий трансформатор, в некоторых ситуациях остаются работать несколько ламп, либо работает только подсветка. В этом случае, надо менять всю проводку люстры, а так же патроны и трансформатор с блоком управления. Но процесс этот, довольно трудоёмкий, и чаще всего извлечь патроны не удаётся.
Кстати точно такая же проблема возникает и у люстр без управления пультом. Только уже не надо заменять ни трансформатора, ни блока управления.
Общие причины, по которым так быстро перегорают лампы накаливания
1. Повышенное напряжение в сети
Одним из главных причин, оказывающих большое влияние на длительность срока службы лампочек, считается качество напряжения в электросети.
Слишком неблагоприятно оказывает влияние на срок службы ламп завышенное напряжение, потому что в данном случае случается насыщенный подогрев вольфрамовой нити, в следствии чего же испаряются атомы вольфрама и оседают на стенах колбы, вызывая ее потемнение, нить равномерно утончается и, в конечном итоге, обрывается.
Что делать, в случае если в квартире постоянно завышенное стабильное напряжение?
В торговых центрах традиционно реализуют простые лампочки на 220-230 В, но возможно отыскать и лампочки на 230-240 В и применять их у себя в квартире. Еще один выход – применять контактные люминисцентные лампы, отлично работающие и при завышенном напряжении.
Возможно приобрести стабилизатор напряжения. Довольно комфортно его устанавливать на стадии ремонтных работ жилплощади. Чтобы достичь желаемого результата необходимо осветительную сеть вашей жилплощади выделить в одну или несколько групп и подключить их к сети через стабилизатор напряжения.
2. Некачественные контакты в патронах ламп, подгоревшие патроны.
Обычно в отечественных светильниках используются патроны из пластмассы, при этом для дешевых осветительных приборов используют пластик низкого свойства. Реже используются керамические патроны.
Хотя пластмассовые патроны созданы для ламп мощностью до 40 Вт, при большей силы ламп они растрескиваются и равномерно выгорают. По мере эксплуатации случается окисление и подгорание контактов в патронах, что приводит к доп нагреванию лампочек и выходу их из строя.
В случае если у вас повсевременно перегорают лампочки в одной люстре, время от времени слышен треск, сопровождаемый изменением яркости лампы, то первопричина имеет возможность крыться конкретно в недостаточно надежных контактах в патронах для ламп.
Нужно зачистить контакты и поменять пригоревшие патроны, а идеальнее всего приобрести новейший осветительный прибор и установить его. Никогда не применяйте в осветительном приборе лампы большей мощности, нежели предвидено инструкцией!
3. Некачественный выключатель или выключатель с подгоревшими контактами.
Первопричина может быть и в плохом выключателе. Попытайтесь демонтировать выключатель и выяснить, не подгорели ли контакты. Поглядите, нет ли почернений в местах соединений проводов с выключателем. В случае если имеется искрение, подгорели контакты либо почернели электропровода в местах соединений, то такой выключатель надлежит поменять.
Идеальнее всего установить диммер, при помощи которого возможно регулировать яркость освещения. Он встанет на защиту ваши лампочки от внезапных колебаний тока в момент подключения.
4. Недостаточно надежное подключение проводов люстры, слабые контакты в распределительных коробках либо квартирном щитке.
Все контакты обязаны быть высококачественными и надежными, потому что конкретно ненадежные и ослабленные с течением времени контакты считаются предпосылкой того, что перегорают лампочки и нарушается стабильная работа электрических приборов. В особенности нередко нарушаются контакты, когда в квартире установлена алюминиевая электропроводка.
5. Короткие, хотя мощные (до 600 вольт) скачки напряжения.
К примеру, кое-кто подключил сварку либо еще какую массивно «шумящую» гадость к Вашей сети. Ориентируется по повторяющимся морганиям ламп накаливания во включенном состоянии.
6.Частое включение ламп.
Когда лампа выключена, ее вольфрамовая нить накаливания пребывает в прохладном состоянии. Следовательно, ее сопротивление в пару раз меньше, нежели в нагретом состоянии (рабочем).Получается, что в момент подключения лампы (нить накаливания еще прохладная) ток значительно более, нежели ток в рабочем ее состоянии (нить уже нагрелась).При частом подключении лампочек данный пусковой ток приводит к перегоранию нити накаливания.
8.Вибрация и механические воздействия. Когда около лампочек имеются постоянные вибрации, удары и другие мех-ские действия, то она перегорит довольно стремительно. При таком варианте необходимо просто применять иной вид ламп, к примеру, КЛЛ либо светодиодные.
9.Температура находящегося вокруг воздуха. В зонах отрицательных температур при эксплуатации ЛН появляются мощные перепады по температуре у вольфрамовой нити. Оказывается при низкой температуре ее сопротивление уменьшается еще более, следовательно и пусковой ток при подключении становится еще больше, что приводит к досрочному выходу ее из строя.
Физическое объяснение, почему перегорают лампочки и какие процессы, оказывают влияние на срок службы ламп накаливания
Вы проверили и приобрели лампу накаливания, она исправно работала пару месяцев, но, в конечном итоге, перегорела, хоть и эксплуатировалась она при размеренном напряжении. В чем причина настолько резвого выхода из строя вашей лампочки? Ведь напряжение в сети вашей квартиры не изменялось.
При ближнем рассмотрении лампочки мы подметим, что ее баллон почернел. Данное вызвано тем, что на внутренней стороне пробирки оседают частички вольфрама, который испаряется со спирали при нагревании.
В случае если нить лампочки неравномерна по всей протяженности и имеет различную толщину, то в местах, где толщина нити менее, при прохождении тока растет сопротивление, в следствии чего же возрастает температура прогревания нити.
При повышении температуры случается интенсивное испарение вольфрама, приводящее к тому, что нить в данных местах делается тоньше и резвее перегорает.
Главную роль играют и условия остывания вольфрамовой нити. Наверняка, вы заметили, что в пределах держателей, которые содействуют остыванию спирали, нить практически никогда не перегорает.
Еще одной, самой прозаичной предпосылкой, отчего перегорают лампочки, считается их нередкое включение и выключение. В момент, когда спираль еще не нагрелась и вовсе не сможет обеспечить необходимого сопротивления, случается повышение номинального тока в пару раз, что слишком плохо оказывает влияние на работу ламп накаливания.
Влияние качества электроэнергии на работу электроприемников
4.1 Характерные типы электроприемников
Отклонения ПКЭ от нормируемых значений ухудшают условия эксплуатации электрооборудования энергоснабжающих организаций и потребителей электроэнергии, могут привести к значительным убыткам как в промышленности, так и в бытовом секторе, обуславливают, как уже отмечалось, технологический и электромагнитный ущербы.
От электрических сетей систем электроснабжения общего назначения питаются ЭП различного назначения, рассмотрим промышленные и бытовые ЭП.
Наиболее характерными типами ЭП, широко применяющимися на предприятиях различных отраслей промышленности, являются электродвигатели и установки электрического освещения. Значительное распространение находятэлектротермические установки, а также вентильные преобразователи, служащие для преобразования переменного тока в постоянный. Постоянный ток на промышленных предприятиях применяется для питания двигателей постоянного тока, для электролиза, в гальванических процессах, при некоторых видах сварки и т. д.
Электродвигатели применяются в приводах различных производственных механизмов. В установках, не требующих регулирования частоты вращения в процессе работы, применяются электроприводы переменного тока: асинхронные и синхронные электродвигатели.
Большое распространение асинхронных двигателей обусловлено их простотой в исполнении и эксплуатации и относительно небольшой стоимостью.
Синхронные двигатели имеют ряд преимуществ по сравнению с асинхронными двигателями: обычно используются в качестве источников реактивной мощности, их вращающий момент меньше зависит от напряжения на зажимах, во многих случаях они имеют более высокий КПД. В то же время синхронные двигатели являются более дорогими и сложными в изготовлении и эксплуатации.
Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновыми применяются на всех предприятиях для внутреннего и наружного освещения, для нужд городского освещения и т.д.
Электросварочные установки могут являться причиной нарушения нормальных условий работы для других ЭП. В частности, сварочные агрегаты, мощность которых в настоящее время достигает 1500 кВт в единице, вызывают значительно большие колебания напряжения в электрических сетях, чем, например, пуск асинхронных двигателей с короткозамкнутым ротором. Кроме того, эти колебания напряжения происходят длительно и с широким диапазоном частот, в том числе и в самом неприятном для установок электрического освещения диапазоне (порядка 10 Гц).
Электротермические установки в зависимости от метода нагрева делятся на группы: дуговые печи, печи сопротивления прямого и косвенного действия, электронные плавильные печи, вакуумные, шлакового переплава, индукционные печи. Данная группа ЭП также оказывает неблагоприятное влияние на питающую сеть, например, дуговые печи, которые могут иметь мощность до 10 МВт, в настоящее время сооружаются как однофазные. Это приводит к нарушению симметрии токов и напряжений (последнее происходит в связи с падениями напряжения на сопротивлениях сети от токов разных последовательностей). Кроме того, дуговые печи, как и вентильные установки, являются нелинейными ЭП с малой инерционностью. Поэтому они приводят к несинусоидальности токов, а, следовательно, и напряжений.
Воздействие каждого отдельно взятого бытового ЭП незначительно, совокупность же ЭП, подключаемых к шинам 0,4 кВ трансформаторной подстанции, оказывает существенное влияние на питающую сеть.
4.2 Влияние отклонений напряжения
Отклонения напряжения оказывают значительное влияние на работу асинхронных двигателей (АД), являющихся наиболее распространенными приемниками электроэнергии в промышленности.
Рис.4.1. Механическая характеристика двигателя при номинальном (М1) и пониженном (М2) напряжениях.
При изменении напряжения изменяется механическая характеристика АД – зависимость его вращающего момента М от скольжения s или частоты вращения (рис.4.1). С достаточной точностью можно считать, что вращающий момент двигателя пропорционален квадрату напряжения на его выводах. При снижении напряжения уменьшается вращающий момент и частота вращения ротора двигателя, так как увеличивается его скольжение. Снижение частоты вращения зависит также от закона изменения момента сопротивления Mc (на рис 4.1 Mc принят постоянным) и от загрузки двигателя. Зависимость частоты вращения ротора двигателя от напряжения можно выразить:
где – синхронная частота вращения;
– коэффициент загрузки двигателя;
,– номинальные значения напряжения и скольжения соответственно.
Из формулы (4.1) видно, что при малых загрузках двигателя частота вращения ротора будет больше номинальной частоты вращения (при номинальной загрузке двигателя). В таких случаях понижения напряжения не приводят к уменьшению производительности технологического оборудования, так как снижения частоты вращения двигателей ниже номинальной не происходит.
Для двигателей, работающих с полной нагрузкой, понижение напряжения приводит к уменьшению частоты вращения. Если производительность механизмов зависит от частоты вращения двигателя, то на выводах таких двигателей рекомендуется поддерживать напряжение не ниже номинального. При значительном снижении напряжения на выводах двигателей, работающих с полной нагрузкой, момент сопротивления механизма может превысить вращающий момент, что приводит к “опрокидыванию” двигателя, т.е. к его остановке. Во избежание повреждений двигатель необходимо отключить от сети.
Снижение напряжения ухудшает и условия пуска двигателя, так как при этом уменьшается его пусковой момент.
Практический интерес представляет зависимость потребляемой двигателем активной и реактивной мощности от напряжения на его выводах.
В случае снижения напряжения на зажимах двигателя реактивная мощность намагничивания уменьшается (на 2 – 3 % при снижении напряжения на 1 %), при той же потребляемой мощности увеличивается ток двигателя, что вызывает перегрев изоляции.
Если двигатель длительно работает при пониженном напряжении, то из-за ускоренного износа изоляции срок службы двигателя уменьшается. Приближенно срок службы изоляции Т можно определить по формуле:
(4.2)
где – срок службы изоляции двигателя при номинальном напряжении и номинальной нагрузке;
R – коэффициент, зависящий от значения и знака отклонения напряжения, а также от коэффициента загрузки двигателя и равный:
Поэтому с точки зрения нагрева двигателя более опасны в рассматриваемых пределах отрицательные отклонения напряжения.
Снижение напряжения приводит также к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и АД.
Повышение напряжения на выводах двигателя приводит к увеличению потребляемой ими реактивной мощности. При этом удельное потребление реактивной мощности растет с уменьшением коэффициента загрузки двигателя. В среднем на каждый процент повышения напряжения потребляемая реактивная мощность увеличивается на 3 % и более (в основном за счет увеличения тока холостого хода двигателя), что в свою очередь приводит к увеличению потерь активной мощности в элементах электрической сети.
Лампы накаливания характеризуются номинальными параметрами: потребляемой мощностью , световым потоком , световой отдачей (равной отношению излучаемого лампой светового потока к ее мощности) и средним номинальным сроком службы .Эти показатели в значительной мере зависят от напряжения на выводах ламп накаливания. При отклонениях напряжения на 10% эти характеристики приближенно можно описать следующими эмпирическими формулами:
(4.5)
(4.6)
(4.7)
(4.8)
Рис.4.2. Зависимости характеристик ламп накаливания от напряжения: 1 – потребляемая мощность, 2 – световой поток, 3 – световая отдача, 4 – срок службы.
Изменения напряжения приводят к соответствующим изменениям светового потока и освещенности, что, в конечном итоге, оказывает влияние на производительность труда и утомляемость человека.
Люминесцентные лампы менее чувствительны к отклонениям напряжения. При повышении напряжения потребляемая мощность и световой поток увеличиваются, а при снижении – уменьшаются, но не в такой степени как у ламп накаливания. При пониженном напряжении условия зажигания люминесцентных ламп ухудшаются, поэтому срок их службы, определяемый распылением оксидного покрытия электродов, сокращается как при отрицательных, так и при положительных отклонениях напряжения.
При отклонениях напряжения на 10% срок службы люминесцентных ламп в среднем снижается на 20 – 25%. Существенным недостатком люминесцентных ламп является потребление ими реактивной мощности, которая растет с увеличением подводимого к ним напряжения.
Отклонения напряжения отрицательно влияют на качество работы и срок службы бытовой электронной техники(радиоприемники, телевизоры, телефонно-телеграфная связь, компьютерная техника).
Вентильные преобразователи обычно имеют систему автоматического регулирования постоянного тока путем фазового управления. При повышении напряжения в сети угол регулирования автоматически увеличивается, а при понижении напряжения уменьшается. Повышение напряжения на 1 % приводит к увеличению потребления реактивной мощности преобразователем примерно на 1-1,4%, что приводит к ухудшению коэффициента мощности. В то же время другие показатели вентильных преобразователей с повышением напряжения улучшаются, и поэтому выгодно повышать напряжение на их выводах в пределах допустимых значений.
Электрические печи чувствительны к отклонениям напряжения. Понижение напряжения электродуговых печей, например, на 7 % приводит к удлинению процесса плавки стали в 1,5 раза. Повышение напряжения выше 5% приводит к перерасходу электроэнергии.
4.3 Влияние колебаний напряжения
К числу ЭП, чрезвычайно чувствительных к колебаниям напряжения относятся осветительные приборы, особенно лампы накаливания и электронная техника.
Стандартом определяется воздействие колебаний напряжения на осветительные установки, влияющие на зрение человека. Мигание источников освещения (фликер-эффект) вызывает неприятный психологический эффект, утомление зрения и организма в целом. Это ведет к снижению производительности труда, а в ряде случаев и к травматизму.
При одинаковых колебаниях напряжения отрицательное влияние ламп накаливания проявляется в значительно большей мере, чем газоразрядных ламп. Колебания напряжения более 10 % могут привести к погасанию газоразрядных ламп. Зажигание их в зависимости от типа ламп происходит через несколько секунд и даже минут.
Колебания напряжения нарушают нормальную работу и уменьшают срок службы электронной аппаратуры:радиоприемников, телевизоров, телефонно-телеграфной связи, компьютерной техники, рентгеновских установок, радиостанций, телевизионных станций и т.д.
При значительных колебаниях напряжения (более 15%) могут быть нарушены условия нормальной работыэлектродвигателей, возможно отпадание контактов магнитных пускателей с соответствующим отключением работающих двигателей.
Колебания напряжения с размахом 10 – 15 % могут привести к выходу из строя батарей конденсаторов, а такжевентильных преобразователей.
4.4 Влияние несимметрии напряжений
При несимметрии напряжений сети в синхронных машинах наряду с возникновением дополнительных потерь активной мощности и нагревом статора и ротора могут возникнуть опасные вибрации в результате появления знакопеременных вращающих моментов и тангенциальных сил, пульсирующих с двойной частотой сети. При значительной несимметрии вибрация может оказаться опасной, а в особенности при недостаточной прочности и наличии дефектов сварных соединений. При несимметрии токов, не превышающей 30%, опасные перенапряжения в элементах конструкций, как правило, не возникают.
Правила технической эксплуатации электрических сетей и станций в РФ указывают, что “длительная работа генераторов и синхронных компенсаторов при неравных токах фаз допускается, если разница токов не превышает 10% номинального тока статора для турбогенераторов и 20% для гидрогенераторов. При этом токи в фазах не должны превышать номинальных значений. Если эти условия не выполняются, то необходимо принимать специальные меры по уменьшению несимметрии”.
Несимметрия напряжения значительно ухудшает режимы работы многофазных вентильных выпрямителей: значительно увеличивается пульсация выпрямленного напряжения, ухудшаются условия работы системы импульсно-фазового управления тиристорных преобразователей.
Несимметрия напряжений значительно влияет и на однофазные ЭП, если фазные напряжения неравны, то, например, лампы накаливания, подключенные к фазе с более высоким напряжением, имеют больший световой поток, но значительно меньший срок службы по сравнению с лампами, подключенными к фазе с меньшим напряжением. Несимметрия напряжений усложняет работу релейной защиты, ведет к ошибкам при работе счетчиков электроэнергии и т.д.
4.5 Влияние несинусоидальности напряжения
ЭП с нелинейными вольт-амперными характеристиками потребляют из сети несинусоидальные токи при подведении к их зажимам синусоидального напряжения. Токи высших гармоник, проходя по элементам сети, создают падения напряжения в сопротивлениях этих элементов и, накладываясь на основную синусоиду напряжения, приводят к искажениям формы кривой напряжения в узлах электрической сети. В связи с этим ЭП с нелинейной вольт-амперной характеристикой часто называют источниками высших гармоник.
Наиболее серьезные нарушения КЭ в электрической сети имеют место при работе мощных управляемых вентильных преобразователей. При этом порядок высших гармонических составляющих тока и напряжения в сети определяется по формуле
где m – число фаз выпрямления;
k – последовательный ряд натуральных чисел (0,1,2 …).
Коэффициент искажения синусоидальности кривой напряжения в сетях с электродуговыми сталеплавильными и руднотермическими печами определяется в основном 2, 3, 4, 5, 7-й гармониками.
Коэффициент искажения синусоидальности кривой напряжения установок дуговой и контактной сварки определяется в основном 5, 7, 11, 13-й гармониками.
Исследования кривой тока намагничивания трансформаторов, включенных в сеть синусоидального напряжения, показали, что при трехстержневом сердечнике и соединениях обмоток U/U; и /U; в электрической сети имеются все нечетные гармоники, в том числе гармоники, кратные трем. Гармоники, кратные трем, обусловлены несимметрией намагничивающих токов по фазам:
(4.10)
Действующее значение намагничивающего тока трансформатора:
(4.11)
В целом несинусоидальные режимы обладают теми же недостатками, что и несимметричные.
Высшие гармоники тока и напряжения вызывают дополнительные потери активной мощности во всех элементах системы электроснабжения: в линиях электропередачи, трансформаторах, электрических машинах, статических конденсаторах, так как сопротивления этих элементов зависят от частоты.
Так, например, емкостное сопротивление конденсаторов, устанавливаемых в целях компенсации реактивной мощности, с повышением частоты подводимого напряжения уменьшается. Поэтому, если в напряжении питающей сети есть высшие гармоники, то сопротивление конденсаторов на этих гармониках оказывается значительно ниже, чем на частоте 50 Гц. Из-за этого в конденсаторах, предназначенных для компенсации реактивной мощности, даже небольшие напряжения высших гармоник могут вызвать значительные токи гармоник. На предприятиях с большим удельным весом нелинейных нагрузок батареи конденсаторов работают плохо. Они или отключаются защитой от перегрузки по току или за короткий срок выходят из строя из-за вспучивания банок (или ускоренного старения изоляции). Известны случаи, когда на предприятиях с развитой кабельной сетью напряжением 6 –10 кВ батареи конденсаторов оказываются в режиме резонанса токов (или близких к этому режиму) на частоте какой – либо из гармоник, что приводит к опасной перегрузке их по току.
Высшие гармоники вызывают:
Кривая напряжения, подводимого к ЭП, не должна содержать высших гармоник в установившемся режиме работы электросети. Следует подчеркнуть, что в условиях работы ЭП, несинусоидальность напряжения проявляется совместно с действиями других влияющих факторов и поэтому необходимо рассматривать всю совокупность факторов совместно.
4.6 Влияние отклонения частоты
Жесткие требования стандарта к отклонениям частоты питающего напряжения обусловлены значительным влиянием частоты на режимы работы электрооборудования, ход технологических процессов производства и, как следствие, технико-экономические показатели работы промышленных предприятий.
Анализ работы предприятий с непрерывным циклом производства показал, что большинство основных технологических линий оборудовано механизмами с постоянным и вентиляторным моментами сопротивлений, а их приводами служат асинхронные двигатели. Частота вращения роторов двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя.
Степень влияния частоты на производительность ряда механизмов может быть выражена через потребляемую ими активную мощность:
(4.4)
n – показатель степени.
В зависимости от значений показателя степени n, ЭП можно разбить на следующие группы:
ЭП 2-й и 3-й групп, наиболее подверженые влиянию частоты, имеют регулировочные возможности, благодаря которым потребляемая ими мощность из сети остается практически неизменной.
Наиболее чувствительны к понижению частоты двигатели собственных нужд электростанций. Снижение частоты приводит к уменьшению их производительности, что сопровождается снижением располагаемой мощности генераторов и дальнейшим дефицитом активной мощности и снижением частоты (имеет место лавина частоты).
Такие ЭП, как лампы накаливания, печи сопротивления, дуговые электрические печи на изменение частоты практически не реагируют.
Кроме этого, пониженная частота в электрической сети влияет и на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы, реакторы со стальным магнитопроводом), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных сердечников.
Для предотвращения общесистемных аварий, вызванных снижением частоты предусматриваются специальные устройства автоматической частотной разгрузки (АЧР), отключающие часть менее ответственных потребителей. После ликвидации дефицита мощности, например после включения резервных источников, специальные устройства частотного автоматического повторного включения (ЧАПВ) включают отключенных потребителей и нормальная работа системы восстанавливается.
Поддержание нормальной частоты, соответствующей требованиям стандарта является технической, а не научной задачей, основной путь решения которой – ввод генерирующих мощностей с целью создания резервов мощности в сетях энергоснабжающих организаций.
4.7 Влияние электромагнитных помех
В системах электроснабжения общего назначения нашли широкое применение электронные и микроэлектронные системы управления, микропроцессоры и ЭВМ, что привело к снижению уровня помехоустойчивости систем управления ЭП и резкому возрастанию количества их отказов. Основной причиной отказов является воздействие электромагнитных переходных помех, возникающих при электромагнитных переходных процессах как в сетях энергосистем, так и в городских, и промышленных электрических сетях. Длительность протекания переходных процессов составляет от нескольких периодов тока промышленной частоты до нескольких секунд, а эффективная полоса частот помех может достигать десятков мегагерц.
Характеристикой электромагнитных переходных помех являются провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений, однако, рассматривает эти помехи в рамках проблемы электромагнитной совместимости.
Электромагнитные переходные помехи, сопровождающиеся провалами напряжения, возникают, в основном, при однофазных коротких замыканиях воздушных линий вследствие перекрытия изоляции. Эти повреждения либо самоликвидируются, либо устраняются при кратковременном отключении с последующим автоматическим повторным включением (АПВ). Кроме того, причиной возникновения провалов напряжения являются междуфазные замыкания, возникающие в результате атмосферных явлений, а также отключения питающих линий и конденсаторов. Количество провалов напряжения с глубиной до 20 % достигает в распределительных сетях 55 – 60 %. Свыше 60 % остановов механизмов приходится на провалы напряжения с глубиной более 20 %.
Причиной возникновения электромагнитных переходных помех в системах электроснабжения общего назначения могут быть перенапряжения, возникающие при однофазных замыканиях на землю, при коммутациях батарей конденсаторов и резонансных фильтров, при отключении ненагруженных кабельных линий и трансформаторов, при одновременной коммутации контактов выключателей и другой коммутационной аппаратуры, при неполнофазных режимах работы электрической сети вследствие различных причин, приводящих к феррорезонансным явлениям. Восприимчивость электронного оборудования и ЭВМ к перенапряжениям зависит как от АЧХ ЭП, так и от АЧХ электромагнитных помех.
Увеличение мощности энергосистем и количества воздушных линий, применяемых для повышения надежности электроснабжения промышленных предприятий, приводит к снижению надежности функционирования сложных электронных систем управления и возрастанию числа отказов помехочувствительных ЭП.
Как уже отмечалось, при значениях всех ПКЭ по напряжению, отличных от нормируемых, происходит ускоренное старение изоляции электрооборудования, в результате возрастает интенсивность потоков отказов с течением времени. Так, при несинусоидальности кривой напряжения сети даже при резонансной настройке дугогасящих аппаратов, через место замыкания на землю проходит ток высших гармоник, и может произойти прожигание кабеля в месте первого повреждения. В этом случае возможно возникновение, как показывает опыт эксплуатации, одновременно двух и более аварий из-за перенапряжений.