Что нужно делать при вычитании дробей
Вычитание дробей
При вычитании дробей, как и при сложении, могут встретиться несколько случаев.
Вычитание дробей с одинаковыми знаменателями
При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.
Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.
В буквенном виде правило вычитания дробей с одинаковыми знаменателями записывают так:
Вычитание правильной дроби из единицы
Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.
Вычитание правильной дроби из целого числа
Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число в виде смешанного числа.
Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби.
В примере единицу мы заменили неправильной дробью
7 |
7 |
и вместо 3 записали смешанное число и от дробной части отняли дробь.
Вычитание смешанных чисел
При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.
При подобных расчётах могут встретиться разные случаи.
Первый случай вычитания смешанных чисел
У дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого (что вычитаем).
Второй случай вычитания смешанных чисел
У дробных частей разные знаменатели.
В этом случае вначале нужно привести к общему знаменателю дробные части, а затем выполнить вычитание целой части из целой, а дробной из дробной.
Третий случай вычитания смешанных чисел
Дробная часть уменьшаемого меньше дробной части вычитаемого.
Так как у дробных частей разные знаменатели, то как и во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.
Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.
Сложим полученную неправильную дробь
18 |
18 |
и дробную часть уменьшаемого и получим:
Все рассмотренные случаи можно описать с помощью правил вычитания смешанных чисел.
Вычитание обыкновенных дробей: правила, примеры, решения.
Продолжаем изучать действия с обыкновенными дробями. Здесь мы разберемся, как проводится вычитание обыкновенных дробей. Сначала получим правило вычитания дробей с одинаковыми знаменателями. Дальше рассмотрим вычитание дробей с разными знаменателями и приведем примеры вычитания с подробными решениями. После этого остановимся на вычитании дроби из натурального числа и вычитании числа из дроби. В заключение покажем, как проводится вычитание обыкновенных дробей с использованием свойств этого действия.
Сразу заметим, что в этой статье мы будем говорить лишь о вычитании меньшей дроби из большей дроби. Другие случаи разобраны в статье вычитание рациональных чисел.
Навигация по странице.
Вычитание дробей с одинаковыми знаменателями
Для начала приведем пример, который позволит нам выяснить, как проводится вычитание дробей с одинаковыми знаменателями.
Пусть на тарелке находилось пять восьмых долей яблока, то есть, 5/8 яблока, после чего две восьмых доли забрали. По смыслу вычитания (смотрите общее представление о вычитании), указанное действие описывается так: . Понятно, что при этом на тарелке остается 5−2=3 восьмых доли яблока. То есть, .
Рассмотренный пример иллюстрирует правило вычитания дробей с одинаковыми знаменателями: при вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитается числитель вычитаемого, а знаменатель остается прежним.
Озвученное правило с помощью букв записывается так: . Эту формулу и будем использовать при вычитании дробей с одинаковыми знаменателями.
Рассмотрим примеры вычитания дробей с одинаковыми знаменателями.
Краткий вариант решения выглядит так: .
.
При возможности нужно проводить сокращение дроби и (или) выделение целой части из неправильной дроби, которая получается при вычитании дробей с одинаковыми знаменателями.
Вычислите разность .
Воспользуемся формулой вычитания дробей с одинаковыми знаменателями: .
Дробь 11/6 – неправильная (смотрите правильные и неправильные дроби). Поэтому из нее нужно выделить целую часть: .
Итак, вычисляемая разность дробей с одинаковыми знаменателями равна .
Вот все решение: .
.
Вычитание дробей с разными знаменателями
Вычитание дробей с разными знаменателями сводится к вычитанию дробей с одинаковыми знаменателями. Для этого дроби с разными знаменателями достаточно привести к общему знаменателю.
Итак, чтобы провести вычитание дробей с разными знаменателями, надо:
Рассмотрим примеры вычитания дробей с разными знаменателями.
Кратко решение записывается так: .
.
Не следует забывать про сокращение полученной после вычитания дроби, а также про выделение целой части.
.
Вычитание натурального числа из обыкновенной дроби
Вычитание натурального числа из дроби можно свести к вычитанию обыкновенных дробей. Для этого достаточно представить натуральное число в виде дроби со знаменателем 1. Разберем решение примера.
.
Однако вычитание натурального числа из неправильной дроби удобнее проводить, представив дробь в виде смешанного числа. Покажем решение предыдущего примера этим способом.
.
Вычитание обыкновенной дроби из натурального числа
Вычитание обыкновенной дроби из натурального числа можно свести к вычитанию обыкновенных дробей, представив натуральное число как дробь. Разберем решение примера, иллюстрирующего такой подход.
Выделив целую часть из полученной дроби, получаем окончательный ответ .
.
Однако существует более рациональный способ вычитания дроби из натурального числа. Его преимущества особенно заметны, когда уменьшаемое натуральное число и знаменатель вычитаемой дроби являются большими числами. Все это будет видно из примеров ниже.
Если вычитаемая дробь правильная, то уменьшаемое натуральное число можно заменить суммой двух чисел, одно из которых равно единице, отнять правильную дробь от единицы, после чего завершить вычисления.
А теперь для сравнения покажем, с какими числами нам бы пришлось работать, если бы мы решили свести вычитание исходных чисел к вычитанию дробей:
.
Если же вычитаемая дробь неправильная, то ее можно заменить смешанным числом, после чего провести вычитание смешанного числа из натурального числа.
.
Использование свойств вычитания при вычитании дробей
Для вычитания обыкновенных дробей справедливы все свойства вычитания натуральных чисел. Это следует из смысла, который мы придали обыкновенным дробям и операции вычитания дробей. Свойства вычитания позволяют вычислять значения выражений с дробями. Рассмотрим примеры.
Вычислите значение выражения .
Решения подобных примеров с натуральными числами разобраны в разделе вычитание суммы из числа. Здесь будем действовать аналогично.
.
Когда выражение содержит и натуральные числа и дроби, то при вычислении удобно группировать числа с числами, а дроби с дробями.
Выполните вычитание суммы натурального числа и обыкновенной дроби из суммы натурального числа и обыкновенной дроби .
.
Вычитание дробей
4 класс, 5 класс, 6 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие дроби
Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Есть два формата записи:
Над чертой принято писать делимое, которое является числителем. А под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например 3/7 и 31/45.
Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1\4.
Основные свойства дробей
1. Дробь не имеет значения, при условии, если делитель равен нулю.
2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
3. Равными называют a/b и c/d в том случае, если a * d = b * c.
4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Правило вычитания дробей
Вычитание — арифметическое действие, когда от одного числа отнимают другое.
Свойства вычитания:
Онлайн-школа Skysmart приглашает детей и подростков на курсы по математике — за интересными задачами, новыми прикладными знаниями и хорошими оценками!
Вычитание дробей с одинаковыми знаменателями
Для вычитания дробей с одинаковыми знаменателями нужно от числителя первой отнять числитель второй, а знаменатель оставить тот же.
Прежде, чем зафиксировать ответ, важно проверить возможность сокращения.
Рассмотрим это правило на примере:
Вычитание дробей с разными знаменателями
Как вычитать дроби с разными знаменателями? Для этого приводим их к общему знаменателю и гаходим разность числителей.
Рассмотрим пример, в котором нужно найти разность 2/9 и 1/15.
Как решаем:
НОК (9, 15) = 3 * 3 * 5 = 45
Вычитание обыкновенной дроби из натурального числа
Для вычитания из обыкновенной дроби натурального числа необходимо это действие привести к вычитанию обыкновенных дробей.
Разберем для наглядности пример разности 3 и 6/7.
Как решаем:
Ответ: две целых одна седьмая.
Вычитание натурального числа из обыкновенной дроби
Для вычитания натурального числа из обыкновенной дроби нужно последовать тому же алгоритму, что и в предыдущем примере. А именно: перевести натуральное число в вид дроби, привести все к единому знаменателю, найти разность.
Рассмотрим пример разности 3 из 83/21.
Как решаем:
А еще можно вот так:
Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:
Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, нужно решать примеры сложения дробей, как можно чаще.
Дроби. Вычитание дробей.
Вычитание дробей с одинаковыми знаменателями.
Для нахождения разницы 2х дробей с одинаковыми знаменателями, необходимо вычесть из числителя 1й дроби числитель 2й дроби, а знаменатель обоих дробей оставить не изменяя. Вычитание обыкновенных дробей:
Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь, которую вы получили.
Вычитание дробей с одинаковыми знаменателями, примеры:
,
,
Вычитание правильной дроби из единицы.
Если необходимо вычесть из единицы дробь, которая является правильной, единицу переводят к виду неправильной дроби, у нее знаменатель равен знаменателю вычитаемой дроби.
Пример вычитания правильной дроби из единицы:
Знаменатель вычитаемой дроби = 7, т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.
Вычитание правильной дроби из целого числа.
Правила вычитания дробей – правильной из целого числа (натурального числа) :
Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.
Пример вычитания дробей:
В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.
Вычитание дробей с разными знаменателями.
Или, если сказать другими словами, вычитание разных дробей.
Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ), и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.
Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.
Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители, то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!
Порядок действий при вычитании дробей с разными знаменателями.
Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.
Вычитание дробей, примеры:
Вычитание смешанных дробей.
При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.
Первый вариант вычитания смешанных дробей.
Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).
Второй вариант вычитания смешанных дробей.
Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.
Третий вариант вычитания смешанных дробей.
Дробная часть уменьшаемого меньше дробной части вычитаемого.
Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.
В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:
Как вычитать дроби с разными знаменателями
Что такое дробь? Какие бывают дроби
Дробь является одним из вариантов записи числа в математике.
В простой записи дроби над чертой записывают делимое, то есть числитель. Под чертой расположен делитель, то есть знаменатель. Черта в дроби, разделяющая делитель и знаменатель, обозначает, что необходимо сделать, то есть выполнить деление.
В качестве примера можно рассмотреть следующее выражение:
В левой части равенства 7 является делимым, а 8 — делителем. В правой части уравнения записана дробь. Здесь 7 играет роль числителя, а 8 представляет собой знаменатель.
Основная классификация дробей:
Значение алгебраических дробей определяется значением букв в выражении.
Правильная дробь — это дробь с числителем, который по значению меньше, чем знаменатель.
В качестве примеров правильных дробей можно привести следующие записи:
Неправильная дробь — это дробь с числителем, который больше, либо равен знаменателю.
Пример неправильной дроби:
Использование свойств вычитания при вычитании дробей
Вычитание является действием в арифметике, когда одно число отнимают от другого числа.
При вычитании справедливо использовать следующие свойства чисел:
Вычитание дробей с одинаковыми знаменателями
При вычитании различных дробей с одинаковыми знаменателями требуется из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить без изменений.
Таким образом, чтобы из одной дроби вычесть дробь с аналогичным знаменателем, необходимо вычитать числители, а одинаковые знаменатели оставить прежними. Используя буквы, можно представить наглядную запись этого правила:
В качестве примеров можно решить следующие выражения:
Вычитание смешанных дробей с одинаковыми знаменателями
При вычитании смешанных дробей требуется выполнить отдельно вычитание их целых частей и отдельно вычитание их дробных частей.
В том случае, когда дробная часть уменьшаемого меньше, чем дробная часть вычитаемого, следует выполнить следующие действия:
Используя буквы, данное правило вычитания смешанных дробей можно записать с помощью формулы:
На нескольких примерах можно рассмотреть правило вычитания смешанных дробей:
Допустимо записать менее сложное решение:
Вычитание дробей с разными знаменателями
Вычитание дробей, которые обладают разными знаменателями, выполняют путем приведения их к общему знаменателю и вычисления разности числителей.
Применение озвученного правила на практике можно рассмотреть на примере дробей, разность которых требуется определить:
В процессе решения задачи можно использовать следующий алгоритм:
2 9 = 2 × 5 9 × 5 = 10 45
1 15 = 1 × 3 15 × 3 = 3 45
Как вычесть из обыкновенной дроби натуральное число
При вычитании натурального числа из обыкновенной дроби следует выполнить ряд действий:
Рассмотреть принцип вычитания натурального числа из обыкновенной дроби можно на примере:
После вычитания получим:
3 × 20 21 – 3 = 20 21
Как вычесть обыкновенную дробь из натурального числа
Уменьшить обыкновенную дробь на натуральное число можно путем перевода данного действия к вычитанию обыкновенных дробей. Принцип решения подобной задачи можно рассмотреть на конкретном примере:
В первую очередь следует записать натуральное число, как смешанное. Для этого нужно занять единицу и перевести ее в неправильную дробь с тем же знаменателем, что у вычитаемой:
Ответ прозвучит таким образом: две целых одна седьмая.
Как из единицы вычесть дробь
Если по условиям задачи из единицы нужно вычесть дробь, то в этом случае следует выполнить ряд последовательных действий:
Используя буквы, можно записать алгоритм:
Если найти сумму числителя разности и числителя вычитаемого, получится в результате знаменатель вычитаемого. Таким образом, при вычитании дроби из единицы итогом является дробь с числителем, который равен разности знаменателя и числителя вычитаемой дроби, а знаменатель — остается таким же. На основании этого заключения можно упростить вычитание дроби из единицы, то есть:
Сокращенная запись имеет вид:
Вычитание смешанного числа из целого числа
Операция вычитания из целого числа смешанного числа (смешанной дроби) выполняется по принципу, аналогичному вычитанию дроби из целого числа. При уменьшении целого числа на значение смешанного следует выполнить несколько действий:
Используя буквы, можно записать правило вычитания смешанного числа из целого:
Вычитание смешанных чисел
Алгоритм действий при вычитании одного смешанного числа из другого:
В первую очередь при вычитании смешанных чисел следует найти самый маленький единый знаменатель дробных частей:
12 на 9 не делится;
12∙2=24 на 9 не делится;
12∙3=36 на 9 делится.
Таким образом, минимальный единый знаменатель этих дробей соответствует 36. Для поиска дополнительного множителя к каждой из дробей необходимо новый знаменатель разделить на старый знаменатель. Отдельно следует вычитать целые части, отдельно — дробные. В итоге получится дробная часть, которая является правильной и несокращаемой. Можно сделать вывод о том, что ответ является окончательным.
Для вычитания смешанных чисел необходимо найти минимальный единый знаменатель для дробных частей:
Начать вычитание смешанных чисел целесообразно с определения минимального единого знаменателя. В связи с тем, что 18 делится на 9, то 18 является самым маленьким общим знаменателем. Дробь, которая получилась в результате, сокращается на 9.
Как перевести смешанную дробь в обыкновенную
Смешанная дробь обладает целыми числами:
В обычной дроби знаменатель больше, чем числитель:
В действительности невозможно перевести обычную дробь в смешанную дробь и наоборот.
Неправильная дробь, в которой числитель больше по сравнению со знаменателем, имеет вид:
Неправильную дробь можно записать в виде смешанной дроби. Возможен и обратный перевод.
К примеру, имеется некая неправильная дробь:
Смешанная дробь может быть преобразована в неправильную дробь. Для этого следует выполнить действия в обратном порядке: