Что необходимо знать по математике

Математика с нуля

«Математика с нуля. Пошаговое изучение математики для начинающих» – это новый проект, предназначенный для людей, которые хотят изучить математику самостоятельно с нуля.

Сразу скажем, здесь нет лёгких решений и таких заявлений как «Купи эту книгу и сдай математику на 5» или «Освой математику за 12 часов» вы тут не увидите. Математика довольно большая наука, которую следует осваивать последовательно и очень медленно.

Сайт представляет собой уроки по математике, которые упорядочены по принципу «от простого к сложному». Каждый урок затрагивает одну или несколько тем из математики. Уроки разбиты на шаги. Начинать изучение следует с первого шага, и так далее по возрастанию.

Каждый изученный урок должен быть понятным. Поэтому, не поняв одного урока, нельзя переходить к следующему, поскольку каждый урок в математике основан на понимании предыдущего. Если вы с первого раза урок не поняли – не расстраивайтесь. Некоторые люди потратили месяцы и годы, чтобы понять хотя бы одну единственную тему. Отчаяние и уныние точно не ваш путь. Читайте, изучайте, пробуйте и снова пробуйте.

Математика хорошо усваивается, когда человек самостоятельно открыв учебник, учит самогó себя. При этом вырабатывается определенная дисциплина, которая очень помогает в будущем. Если вы будете придерживаться принципа «от простого к сложному», то с удивлением обнаружите, что математика не так уж и сложна. Возможно даже она покажется вам интересной и увлекательной.

Что даст вам знание математики? Во-первых, уверенность. Математику знает не каждый, поэтому осознание того, что вы знаете хоть какую-то часть этой серьёзной науки, делает вас особенным. Во-вторых, освоив математику, вы с лёгкостью освоите другие науки и сможете мыслить гораздо шире. Знание математики позволяет овладеть такими профессиями как программист, бухгалтер, экономист. Никто не станет спорить, что эти профессии сегодня очень востребованы.

В общем, дерзай друг!

Желаем тебе удачи в изучении математики!

Новые уроки будут скоро. Оставайся с нами!

Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Источник

Высшая математика для чайников, или с чего начать?

Нагромождение страшных формул, пособия по высшей математике, которые откроешь и тут же закроешь, мучительные поиски решения казалось бы совсем простой задачи…. Подобная ситуация не редкость, особенно когда учебник по математике последний раз открывался в далеком 11 классе. А между тем, в ВУЗах учебные планы многих специальностей предусматривают изучение всеми любимой высшей математики. И в этой ситуации нередко ощущаешь себя полным чайником перед нагромождением ужасной математической абракадабры. Причем, похожая ситуация может сложиться при изучении любого предмета, особенно из цикла естественных наук.

Что делать? Для студента-очника всё значительно проще, если, конечно, предмет не сильно запущен. Можно проконсультироваться у преподавателя, одногруппников, да и просто списать у соседа по парте. Даже полный чайник в высшей математике при таких раскладах сессию переживет.

А если человек учится на заочном отделении ВУЗа, и высшая математика, мягко говоря, в будущем вряд ли потребуется? К тому же совсем нет времени на занятия. Так-то оно, в большинстве случаев так, но никто не отменял выполнение контрольных работ и сдачу экзамена (чаще всего, письменного). С контрольными работами по высшей математике все проще, чайник ты, или не чайник – их можно заказать. И по остальным предметам тоже можно заказать. Но выполнение и сдача на рецензию контрольных работ еще не приведет к заветной записи в зачетной книжке. Часто бывает, что произведение искусства, выполненное на заказ, нужно защищать, и объяснить, почему из этих буковок следует вон та формула. Кроме того, предстоят экзамены, а там уже придется решать определители, пределы и производные САМОСТОЯТЕЛЬНО. Если, конечно, преподаватель не принимает ценные подарки, или нет нанятого доброжелателя за стенами аудитории.

Позвольте, дам очень важный совет. На зачетах, экзаменах по точным и естественным наукам ОЧЕНЬ ВАЖНО ХОТЬ ЧТО-ТО ПОНИМАТЬ. Запомните, ХОТЬ ЧТО-ТО. Полное отсутствие мыслительных процессов просто бесит преподавателя, мне известны случаи, когда студентов-заочников заворачивали по 5-6 раз. Помнится, один молодой человек сдавал контрольную работу 4 раза, и после каждой пересдачи обращался ко мне за консультацией. В конце концов, я заметил, что в ответе вместо буквы «пи» он писал букву «пэ», за что и последовали жесткие санкции со стороны рецензента. Студент ДАЖЕ НЕ ХОТЕЛ ВНИКАТЬ в задание, которое он небрежно переписал

Можно быть полным чайником в высшей математике, но крайне желательно знать, что производная константы равна нулю. Потому что, если Вы ответите какую-нибудь глупость на элементарный вопрос, то велика вероятность того, что на этом учеба в ВУЗе для Вас закончится. Преподаватели гораздо благосклоннее относятся к тому студенту, который ХОТЯ БЫ ПЫТАЕТСЯ разобраться в предмете, к тому, кто, пусть и ошибочно, но пробует что-либо решить, объяснить или доказать. И это утверждение справедливо для всех дисциплин. Поэтому следует решительно отмести позицию «я ничего не знаю, я ничего не понимаю».

Второй важный совет – ПОСЕЩАТЬ ЛЕКЦИИ, даже если их немного. Об этом я уже упоминал на главной странице сайта Математика для заочников. Повторяться нет смысла, почему это ОЧЕНЬ важно, читайте там.

Итак, что же делать, если на носу зачет, экзамен по высшей математике, а дела плачевны – состояние полного, а точнее говоря, пустого чайника?

Один из вариантов – нанять репетитора. С крупнейшей базой репетиторов можно ознакомиться здесь (преимущественно, Москва) или здесь (преимущественно, Санкт-Петербург). По поисковой системе вполне вероятно найти репетитора в своем городе, либо посмотреть местные рекламные газеты. Цена на услуги репетитора может варьироваться от 400 и более рублей за час в зависимости от квалификации преподавателя. Следует отметить, что дёшево – это не значит плохо, особенно если у Вас неплохая математическая подготовка. В то же время за 2-3К рублей Вы и получите НЕМАЛО. Зря таких денег никто не берёт, и напрасно таких денег никто не платит ;-). Единственный важный момент – старайтесь выбрать репетитора с профильным педагогическим образованием. И в самом деле, мы же не ходим за юридической помощью к стоматологу.

В последнее время набирает популярность сервис онлайн репетиторов. Он очень удобен, когда необходимо срочно решить одну-две задачи, разобраться в теме или подготовиться к экзамену. Безусловным преимуществом являются цены, которые в несколько раз ниже, чем у оффлайн репетитора + экономия времени на проезд, что особенно актуально для жителей мегаполисов.

В курсе высшей математики некоторые вещи без репетитора освоить весьма трудно, нужно именно «живое» объяснение.

Тем не менее, во многих типах задач вполне можно разобраться самостоятельно, и, цель данного раздела сайта – научить Вас решать типовые примеры и задачи, которые практически всегда встречаются на экзаменах. Более того, для ряда заданий существуют «жёсткие» алгоритмы, где от правильного решения вообще «никуда не деться». И, в меру моих знаний, я попытаюсь Вам помочь, тем более есть педагогическое образование и опыт работы по специальности.

Начнем разгребать математические абракадабры. Ничего страшного, даже если Вы чайник, высшая математика – это действительно просто и действительно доступно.

А начать нужно с повторения школьного курса математики. Повторение – мать мучения.

Прежде чем, Вы приступите к изучению моих обучающих материалов, да и вообще приступите к изучению любых материалов по высшей математике, НАСТОЯТЕЛЬНО РЕКОМЕНДУЮ, прочитать нижеследующее.

Для того чтобы успешно решать задачи по высшей математике НЕОБХОДИМО:

Уметь складывать, вычитать, умножать и делить. Вспомнить, что любая дробь, например Что необходимо знать по математике, обозначает деление, «три делить на семь» в данном случае. Вспомнить, что такое квадратный корень, например: Что необходимо знать по математике.

ЗАПАСИТЕСЬ МИКРОКАЛЬКУЛЯТОРОМ. Оффлайновым. Это важно. Желательно, чтобы он был с функциями (синусами, логарифмами и т.д.) и умел считать обыкновенные дроби. Если его пока нет, пользуйтесь экселевскими калькуляторами проекта.

Кстати, Эксель. Отличный выбор и практически незаменимое приложение для решения многих задач! Мануал для «чайников» (пусть старенький) я загрузил в библиотеку.

От перестановки слагаемых – сумма не меняется: Что необходимо знать по математике.
А вот это совершенно разные вещи:

Что необходимо знать по математике

Что необходимо знать по математике

Переставлять «икс» и «четверку» просто так нельзя. Заодно вспоминаем культовую букву «икс», которая в математике обозначает неизвестную или переменную величину.

От перестановки множителей – произведение не меняется: Что необходимо знать по математике.
С делением такой фокус не пройдет, Что необходимо знать по математикеи Что необходимо знать по математике– это две совершенно разные дроби и перестановка числителя со знаменателем без последствий не обходится.
Также вспоминаем, что знак умножения («точкy») чаще всего принято не писать: Что необходимо знать по математике, Что необходимо знать по математике

Вспоминаем правила раскрытия скобок:
Что необходимо знать по математике– здесь знаки у слагаемых не меняются
Что необходимо знать по математике– а здесь меняются на противоположные.
И для умножения:
Что необходимо знать по математике
Что необходимо знать по математике

Вообще, достаточно помнить, что ДВА МИНУСА ДАЮТ ПЛЮС, а ТРИ МИНУСА – ДАЮТ МИНУС. И, постараться при решении задач по высшей математике в этом НЕ ЗАПУТАТЬСЯ (очень частая и досадная ошибка).

Вспоминаем приведение подобных слагаемых, Вы должны хорошо понимать следующее действие:
Что необходимо знать по математике

Вспоминаем что такое степень:

Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике.

Степень – это всего лишь обычное умножение.

Вспоминаем, что дроби можно сокращать: Что необходимо знать по математике(сократили на 2), Что необходимо знать по математике(сократили на пять), Что необходимо знать по математике(сократили на Что необходимо знать по математике).

Вспоминаем действия с дробями:
Что необходимо знать по математике

Что необходимо знать по математике

Что необходимо знать по математике

Что необходимо знать по математике

Что необходимо знать по математике

Что необходимо знать по математике
а также, очень важное правило приведения дробей к общему знаменателю:
Что необходимо знать по математике
Если данные примеры малопонятны, смотрите школьные учебники.
Без этого ТУГО будет.

СОВЕТ: все ПРОМЕЖУТОЧНЫЕ вычисления в высшей математике лучше проводить в ОБЫКНОВЕННЫХ ПРАВИЛЬНЫХ И НЕПРАВИЛЬНЫХ ДРОБЯХ, даже если будут получаться страшные дроби вроде Что необходимо знать по математике. Вот эту вот дробь НЕ НАДО представлять в виде Что необходимо знать по математике, и, тем более, НЕ НАДО делить на калькуляторе числитель на знаменатель, получая 4,334552102….

ИСКЛЮЧЕНИЕМ из правила является конечный ответ задания, вот тогда как раз лучше записать Что необходимо знать по математикеили Что необходимо знать по математике.

Уравнение. У него есть левая часть и правая часть. Например:
Что необходимо знать по математике

Можно перенести любое слагаемое в другую часть, сменив у него знак:
Перенесем, например, все слагаемые в левую часть:
Что необходимо знать по математике
Или в правую:
Что необходимо знать по математике

Обратите внимание, что части уравнения можно безболезненно поменять местами:
Что необходимо знать по математике, рАвно, как и произвольно переставить слагаемые в пределах ОДНОЙ части.

Правило пропорции:
Что необходимо знать по математике(считаем, что Что необходимо знать по математикеотличны от нуля)

То, что находится внизу одной части – можно переместить наверх другой части.
То, что находится вверху одной части – можно переместить вниз другой части.

Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике, Что необходимо знать по математике

И, наконец, стОит вспомнить о существовании некоторых функций, таких как, синус, косинус, тангенс, котангенс, логарифм.

При этом в качестве аргумента функции может выступать не только буковка «хэ» (например, Что необходимо знать по математике), но и сложное выражение, например Что необходимо знать по математике, и, рвать функцию на части категорически нельзя!

Что необходимо знать по математике

Не лишним будет вспомнить графики основных функций, предаться воспоминаниям можно на странице Графики и свойства элементарных функций. Там же освежаем в памяти актуальный технический вопрос – Как правильно построить график любой функции?

Кроме того, на складе математических формул и таблиц есть справочный материал Горячие формулы высшей математики.

И, наконец, через долгие-долгие годы я создал:

Кратчайший курс школьной математики

Где мы повторим именно то, что потребуется в высшей математике! Уникально кратко и уникально полезно! Доступна веб версия курса, а также pdf-книга.

Что дальше?

Дальше целесообразно изучить/повторить основы «трёх китов» высшей математики:

алгебры (статьи о множествах и уравнениях);

аналитической геометрии (вводный урок о векторах);

математического анализа (пределы, производные и упомянутая статья о графиках).

После чего можно смело приступать к другим урокам. Используйте левое навигационное меню и закомментированную карту сайта; почти все материалы расположены в логическом порядке их изучения. Также ориентируйтесь по ссылкам в статьях – как правило, я достаточно щепетильно (и даже занудно) останавливаюсь на том, что нужно знать и уметь для освоения той или иной темы.

И ещё одно важное напутствие: старайтесь выполнять ВСЕ предлагаемые мной задачи. Это не разрозненные примеры, а целостный и методически продуманный курс обучения, цель которого – НАУЧИТЬ.

С наилучшими пожеланиями, Александр Емелин

(Переход на главную страницу)

Что необходимо знать по математике Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Что необходимо знать по математике Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Как я перепрограммировала свой мозг, чтобы начать разбираться в математике

Простите, реформаторы образования – нам всё ещё нужны зубрёжка и повторение

Что необходимо знать по математике

Я была капризным ребёнком, росшим на лирической стороне жизни, и относилась к математике и науке так, будто они были симптомами чумы. И потому странно, что я превратилась в человека, ежедневно имеющего дела с тройными интегралами, преобразованиями Фурье и, жемчужиной математики – уравнением Эйлера. Сложно поверить, что из матофоба я превратилась в профессора прикладных наук.

Однажды один из моих учеников спросил, как мне это удалось – как я изменила свой мозг. Мне хотелось ответить – чёрт возьми, с трудом! Я всё-таки заваливала экзамены по математике и физике в начальной, средней и высшей школах. Я записалась в класс для отстающих по математике после того, как отслужила в армии, в 26 лет. На выставке примеров нейропластичности у взрослых я была бы первым экземпляром.

Изучение математики и точных наук во взрослом возрасте открыло мне дверь в технические науки. Но эти тяжёлые взрослые изменения в мозгу открыли мне взгляд изнутри на нейропластичность, связанную со взрослым обучением. К счастью, моя докторская по системному проектированию, во время которой я постигала точные науки, технологии, технические науки и математику (STEM – Science, Technology, Engineering, Math), и моё последующее исследование на тему человеческого мышления, помогло мне понять недавние прорывы в неврологии и когнитивной психологии, связанные с обучением.

В последовавшие за получением мною докторской степени годы через мой класс прошли тысячи студентов – выращенных в начальной и средней школе с верой в то, что понимание математики через активное обсуждение является талисманом обучения. Если вы можете объяснить, что вы выучили, другим – допустим, нарисовав картинку,- тогда вы, наверное, действительно это поняли.

Примером этой техники, «сфокусированной на понимании», и объектом подражания стала Япония. Но из обсуждения часто пропадает конец истории: в Японии также изобрели и метод обучения «Кумон», который основан на запоминании, повторении и зубрёжке для достижения школьником отличного владения материалом. Эту интенсивную программу послешкольного обучения предпочитают тысячи родителей в Японии и во всём мире, дополняя совместное обучение детей большим количеством практики, повторений, и с умом разработанной системой зубрёжки, с целью обеспечить им прекрасное владение материалом.

В США концентрация на понимании иногда заменяет, а не дополняет более старые методы обучения, которые, как подтверждают учёные, работают с естественными процессами мозга, изучающего такие сложные вещи, как математика и точные науки.

Последняя волна реформы обучения математике включает «Общее ядро» – попытку назначить жёсткие общие стандарты по всем США, хотя критики и говорят, что эти стандарты не соответствуют достижениям других, более продвинутых стран. Внешне у стандартов есть некая перспектива. Предполагается, что в математике ученики должны иметь равные возможности в концептуальном понимании, практических и процедурных навыках.

Дьявол, как обычно, в мелочах реализации. В сегодняшнем образовательном климате запоминание и повторение STEM-дисциплин, в отличие от изучения языка и музыки, часто расцениваются, как недостойные занятия, тратящие время учеников и учителей. Многие учителя давно считают, что понимание концепций в дисциплинах STEM имеет наивысший приоритет. Конечно, учителям легче вовлечь учеников в обсуждение математических тем (и этот процесс при правильном руководстве может сильно помочь в понимании задач), чем корпеть над выставлением отметок за домашние задания. В результате, хотя процедурные умения и свободное владение предметом должны преподаваться в тех же дозах, что и концептуальное понимание, часто этого не происходит.

Проблема с концентрацией только на понимании состоит в том, что ученики, постигающие математику и точные науки, часто могут нахвататься основных понятий о важной идее, но её понимание быстро ускользает без его закрепления через практику и повторение. Хуже того, ученикам часто кажется, что они понимают что-то, в то время, когда это не так. Такой подход часто может принести лишь иллюзию понимания. Как недавно сказал мне один из неуспевающих учеников, «Не пойму, почему я так плохо справился с заданием. Я ведь в классе всё понимал». Ему казалось, что он всё понял, и возможно, что так и было, но он не использовал понятое на практике, чтобы оно закрепилось в мозгу. Он не выработал процедурного владения или способности применять знания.

Точно так же, когда вы понимаете, почему вы что-то делаете в математика, вам не нужно каждый раз объяснять себе одно и то же. Вам не нужно носить с собой 25 шариков, выкладывать их по 5 рядов в 5 столбцов на столе, чтобы убедиться, что 5 х 5 = 25. В какой-то момент вы просто это знаете. Вы запоминаете, что при умножении одинаковых чисел в разной степени вы можете просто складывать степени (10 4 x 10 5 = 10 9 ). Используя эту процедуру часто и в разных случаях, вы обнаружите, что вы понимаете, почему и как она работает. Лучшее понимание темы происходит из создания в мозгу осмысленного шаблона.

Что необходимо знать по математике

Я выучила всё это насчёт математики и насчёт самого процесса обучения не в классе, а по ходу течения моей жизни, как человек, в детстве читавший Мадлен Ленгль и Достоевского, изучавший языки в одном из ведущих мировых языковых институтов, а затем резко поменявший свой путь и ставший профессором технических наук.

Будучи молодой девушкой, страстно желавшей изучать языки, и не обладавшей нужными деньгами и навыками, я не могла позволить себе оплачивать колледж. Поэтому я после школы пошла в армию. Мне нравилось изучать языки в школе, и казалось, что армия – как раз то место, где человек может получать деньги за изучение языков, посещая высоко ценящийся языковой институт Минобороны – место, где изучение языков превратили в науку. Я выбрала русский, поскольку он сильно отличался от английского, но был не таким сложным, чтобы изучать его всю жизнь и дойти в итоге до уровня 4-летнего ребёнка. Кроме того, «Железный занавес» притягивал меня – не могла ли я использовать знание русского, чтобы заглянуть за него?

После армии я стала переводчиком на советских траулерах в Беринговом море. Работать на русских было интересно и увлекательно – но также это была внешне приукрашенная работа мигранта. Во время сезона добычи рыбы ты ходишь в море, зарабатываешь неплохо, периодически напиваешься, а затем возвращаешься в порт в конце сезона и надеешься, что тебя снова наймут в следующем году. Для русскоговорящего человека была практически только одна альтернатива этому – работа на АНБ. Мои армейские контакты подталкивали меня к этому, но у меня не лежала к этому душа.

Я начала понимать, что хотя знание другого языка – это хорошо, это был навык с ограниченными возможностями и потенциалом. Из-за моих возможностей склонять слова по-русски мой дом не осаждали. Если только я не была готова терпеть морскую болезнь и периодическое недоедание на вонючих траулерах посреди Берингова моря. Я не могла не вспоминать об инженерах из Вест-Поинта, с которыми я работала в армии. Их математический подход к решению проблем явно был полезен для реального мира – более полезен, чем мои неудачи с математикой.

Так что, в 26 лет я, уходя из армии и оценивая возможности, вдруг подумала: если я хочу заняться чем-то новым, почему бы мне не попробовать нечто, что открыло бы мне целый новый мир перспектив? Технические науки, например? А это значило, что мне предстоит изучить новый язык – язык счисления.

С моим плохим пониманием простейшей математики, после армии я занялась алгеброй и тригонометрией по курсу для отстающих. Пытаться перепрограммировать мозг иногда казалось глупой идеей – особенно, когда я смотрела на лица моих более молодых одноклассников. Но в моём случае, а я ведь изучила русский в зрелом возрасте, я надеялась, что некоторые аспекты изучения языка можно применить в изучении математики и точных наук.

Изучая русский, я старалась не только понимать что-либо, но и достигать беглости в этом. Беглость в таком обширном предмете, как язык, требует такой степени знакомства, которую можно выработать только повторяющейся и различающейся работой с различными областями. Мои одноклассники, изучавшие язык, концентрировались на простом понимании, а я старалась достичь внутренней беглости со словами и структурой языка. Мне недостаточно было того, что слово «понимать» означает «to understand». Я практиковалась с глаголом, постоянно использовала его в разных временах, в предложениях, а затем понимала не только то, где его можно использовать, но и где его использовать не нужно. Я практиковалась над быстрым извлечением из памяти этих аспектов и вариантов. Посредством практики можно понимать и переводить десятки и сотни слов с другого языка. Но если у вас нет беглости, то когда кто-то быстро выплёвывает вам кучку слов, как в обычном разговоре, у вас не возникает понятия о том, что этот человек говорит, хотя технически вы вроде бы понимаете все слова и структуру. И вы, конечно, не можете говорить достаточно быстро для носителей языка, чтобы им было приятно слушать вас.

Этот подход, сосредоточение на беглости, а не на простом понимании, вывел меня на первое место в классе. Тогда я этого не понимала, но этот подход дал мне интуитивное понимание основ обучения и выработки экспертных навыков – кускование [chunking].

Кускование впервые было предложено в революционной работе Герберта Саймона при анализе шахмат. Кусочками служили различные мысленные аналоги шахматных шаблонов. Нейробиологи постепенно пришли к пониманию того, что эксперты, допустим, в шахматах, являются таковыми, поскольку могут хранить тысячи кусочков знания в долгосрочной памяти. Мастера в шахматах могут вспомнить десятки тысяч различных шахматных шаблонов. В любой области эксперт может вспомнить один или несколько хорошо связанных вместе кусков нервных подпрограмм для анализа и реакции на новую ситуацию. Такой уровень настоящего понимания и возможность использовать это понимание в новых ситуациях приобретается только из знакомства с предметом, полученного от повторений, запоминаний и практики.

Изучение мастеров шахмат, врачей скорой помощи и пилотов истребителей показало, что в стрессовых ситуациях сознательный анализ ситуации уступает место быстрой подсознательной обработке данных, когда эксперты обращаются к глубоко интегрированному набору мысленных шаблонов – кусочков. В какой-то момент осознанное понимание того, почему вы делаете то, что делаете, начинает только замедлять вас и прерывает поток, что приводит к принятию худших решений. Я была права, интуитивно ощущая наличие связи между изучением нового языка и математики. Ежедневное и непрерывное изучение русского языка возбуждало и укрепляло нервные контуры в моём мозгу, и я постепенно начала связывать вместе славянские кусочки, которые легко можно было вызывать из памяти. Чередуя изучение, практикуясь так, что я знала не только когда можно использовать слово, но и когда его использовать не нужно, или нужно использовать другой его вариант, я использовала те же подходы, что используют для изучения математики.

Изучение математики и точных наук во взрослом возрасте я начала с той же стратегии. Я смотрела на уравнение – для простого примера возьмём второй закон Ньютона, F = ma. Я практиковалась в ощущении значения каждой буквы: «f», то есть сила,- это толчок, «m», масса,- тяжёлое сопротивление толканию, «a» было радостным ощущением ускорения. (В случае с русским языком я так же практиковала произношение букв кириллицы). Я запоминала уравнение, носила его в своей голове и игралась с ним. Если m и a – большие, то что будет с f в уравнении? Если f большое, а a – маленькое, какое будет m? Как с обеих сторон сходятся единицы измерения? Играться с уравнением – как связывать глагол с другими словами. Я начинала постигать, что смутные очертания уравнения напоминали метафорическую поэму, в которой существовали всякого рода красивые символические представления. И хотя тогда я бы так это не выразила, но для хорошего изучения математики и точных наук мне нужно было медленно и ежедневно строить прочные нервные кусковые подпрограммы.

Со временем профессора математики и точных наук сообщили мне, что построение хорошо зафиксированных в памяти кусочков опыта посредством практики и повторения было жизненно важно для достижения успеха. Понимание не приводит к беглости. Беглость приводит к пониманию. Вообще, я считаю, что реальное понимание сложной темы происходит исключительно от беглости.

Вторгаясь в новую для меня область, становясь инженером-электриком, и, в итоге, профессором инженерного дела, я оставила русский язык позади. Но через 25 лет после того, как я в последний раз подымала стакан на советских траулерах, мы с моей семьей решили совершить путешествие по Транссибу через всю Россию. И хотя я с удовольствием ожидала давно желанного путешествия, я ещё и волновалась. Всё это время я практически не говорила по-русски. Что, если я всё забыла? Что дали мне все те годы достижения беглости?

Конечно, впервые зайдя в поезд, я обнаружила, что говорю по-русски на уровне двухлетнего ребёнка. Я искала слова, мои склонения и спряжения путались, а почти идеальный ранее акцент звучал ужасно. Но основа никуда не делась, и постепенно мой русский улучшался. Даже рудиментарных знаний хватало для ежедневных нужд. Вскоре экскурсоводы начали подходить ко мне за помощью в переводе для других пассажиров. Прибыв в Москву, мы сели в такси. Водитель, как я потом поняла, попытался нас обмануть, поехав в другую сторону и застряв в пробке, считая, что не разбирающиеся иностранцы спокойно выдержат лишний час счётчика. Внезапно русские слова, которыми я не пользовалась десятки лет, вылетели из моего рта. Сознательно я даже не помнила, что знаю их.

Беглость, когда она понадобилась, оказалась под рукой – и выручила нас. Беглость позволяет пониманию встроиться в сознание, и всплывать по необходимости.

Смотря на недостаток людей, специализирующихся в точных науках и в математике в нашей стране, и наши текущие техники обучения, и вспоминая свой собственный путь, с сегодняшними моими знаниями о мозге, я понимаю, что мы можем достичь большего. Как родители и учителя, мы можем использовать простые методы углубления понимания и превращения его в полезный и гибкий инструмент.

Я открыла, что наличие основной и глубоко выученной беглости в математике и точных науках – а не простого «понимания», чрезвычайно важно. Оно открывает пути к самым интересным занятиям в жизни. Оглядываясь в прошлое, я понимаю, что мне не обязательно было слепо следовать моим изначальным склонностям и страстям. Та же самая «беглая» часть меня, обожавшая литературу и язык, в результате полюбила математику и точные науки – и в итоге, преобразила и обогатила мою жизнь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *