Что нельзя делать с помощью нейросетей
Что может и чего не может нейросеть: пятиминутный гид для новичков
Если термины «катастрофическая забывчивость» и «регуляризация весов» вам пока ни о чем не говорят, читайте дальше: попробуем разобраться во всем по порядку.
За что мы любим нейросети
Основное преимущество нейронных сетей перед другими методами машинного обучения состоит в том, что они могут распознавать более глубокие, иногда неожиданные закономерности в данных. В процессе обучения нейроны способны реагировать на полученную информацию в соответствии с принципами генерализации, тем самым решая поставленную перед ними задачу.
К областям, где сети находят практическое применение уже сейчас, можно отнести медицину (например, очистка показаний приборов от шумов, анализ эффективности проведённого лечения), интернет (ассоциативный поиск информации), экономику (прогнозирование курсов валют, автоматический трейдинг), игры (например, го) и другие. Нейросети могут использоваться практически для чего угодно в силу своей универсальности. Однако волшебной таблеткой они не являются, и чтобы они начали функционировать должным образом, требуется проделать много предварительной работы.
Обучение нейросетей 101
Одним из ключевых элементов нейронной сети является способность обучаться. Нейронная сеть — это адаптивная система, умеющая изменять свою внутреннюю структуру на базе поступающей информации. Обычно такой эффект достигается с помощью корректировки значений весов.
Связи между нейронами на соседних слоях нейросети — это числа, описывающие значимость сигнала между двумя нейронами. Если обученная нейронная сеть верно реагирует на входную информацию, то настраивать веса нет необходимости, а в противном случае с помощью какого-либо алгоритма обучения нужно изменить веса, улучшив результат.
Как правило, это делают с помощью метода обратного распространения ошибки: для каждого из обучающих примеров веса корректируются так, чтобы уменьшить ошибку. Считается, что при правильно подобранной архитектуре и достаточном наборе обучающих данных сеть рано или поздно обучится.
Существует несколько принципиально отличающихся подходов к обучению, в привязке к поставленной задаче. Первый — обучение с учителем. В этом случае входные данные представляют собой пары: объект и его характеристику. Такой подход применяется, например, в распознавании изображений: обучение проводится по размеченной базе из картинок и расставленных вручную меток того, что на них нарисовано.
Самой известной из таких баз является ImageNet. При такой постановке задачи обучение мало чем отличается от, например, распознавания эмоций, которым занимается Neurodata Lab. Сети демонстрируются примеры, она делает предположение, и, в зависимости от его правильности, корректируются веса. Процесс повторяется до тех пор, пока точность не увеличивается до искомых величин.
Второй вариант — обучение без учителя. Типичными задачами для него считаются кластеризация и некоторые постановки задачи поиска аномалий. При таком раскладе истинные метки обучающих данных нам недоступны, но есть необходимость в поиске закономерностей. Иногда схожий подход применяют для предобучения сети в задаче обучения с учителем. Идея состоит в том, чтобы начальным приближением для весов было не случайное решение, а уже умеющее находить закономерности в данных.
Переобучение: в чем проблема и как ее решить
Главная проблема нейросетей — переобучение. Оно заключается в том, что сеть «запоминает» ответы вместо того, чтобы улавливать закономерности в данных. Наука поспособствовала появлению на свет нескольких методов борьбы с переобучением: сюда относятся, например, регуляризация, нормализация батчей, наращивание данных и другие. Иногда переобученная модель характеризуется большими абсолютными значениями весов.
Механизм этого явления примерно такой: исходные данные нередко сильно многомерны (одна точка из обучающей выборки изображается большим набором чисел), и вероятность того, что наугад взятая точка окажется неотличимой от выброса, будет тем больше, чем больше размерность. Вместо того, чтобы «вписывать» новую точку в имеющуюся модель, корректируя веса, нейросеть как будто придумывает сама себе исключение: эту точку мы классифицируем по одним правилам, а другие — по другим. И таких точек обычно много.
Очевидный способ борьбы с такого рода переобучением – регуляризация весов. Она состоит либо в искусственном ограничении на значения весов, либо в добавлении штрафа в меру ошибки на этапе обучения. Такой подход не решает проблему полностью, но чаще всего улучшает результат.
Второй способ основан на ограничении выходного сигнала, а не значений весов, — речь о нормализации батчей. На этапе обучения данные подаются нейросети пачками — батчами. Выходные значения для них могут быть какими угодно, и тем их абсолютные значения больше, чем выше значения весов. Если из каждого из них мы вычтем какое-то одно значение и поделим результат на другое, одинаково для всего батча, то мы сохраним качественные соотношения (максимальное, например, все равно останется максимальным), но выход будет более удобным для обработки его следующим слоем.
Третий подход работает не всегда. Как уже говорилось, переобученная нейросеть воспринимает многие точки как аномальные, которые хочется обрабатывать отдельно. Идея состоит в наращивании обучающей выборки, чтобы точки были как будто той же природы, что и исходная выборка, но сгенерированы искусственно. Однако тут сразу рождается большое число сопутствующих проблем: подбор параметров для наращивания выборки, критическое увеличение времени обучения и прочие.
Эффект от удаления аномального значения из тренировочного свода данных (источник)
В обособленную проблему выделяется поиск настоящих аномалий в обучающей выборке. Иногда это даже рассматривают как отдельную задачу. Изображение выше демонстрирует эффект исключения аномального значения из набора. В случае нейронных сетей ситуация будет аналогичной. Правда, поиск и исключение таких значений — нетривиальная задача. Для этого применяются специальные техники — подробнее о них вы можете прочитать по ссылкам (здесь и здесь).
Одна сеть – одна задача или «проблема катастрофической забывчивости»
Работа в динамически изменяющихся средах (например, в финансовых) сложна для нейронных сетей. Даже если вам удалось успешно натренировать сеть, нет гарантий, что она не перестанет работать в будущем. Финансовые рынки постоянно трансформируются, поэтому то, что работало вчера, может с тем же успехом «сломаться» сегодня.
Здесь исследователям или приходится тестировать разнообразные архитектуры сетей и выбирать из них лучшую, или использовать динамические нейронные сети. Последние «следят» за изменениями среды и подстраивают свою архитектуру в соответствии с ними. Одним из используемых в этом случае алгоритмов является метод MSO (multi-swarm optimization).
Более того, нейросети обладают определенной особенностью, которую называют катастрофической забывчивостью (catastrophic forgetting). Она сводится к тому, что нейросеть нельзя последовательно обучить нескольким задачам — на каждой новой обучающей выборке все веса нейронов будут переписаны, и прошлый опыт будет «забыт».
Безусловно, ученые трудятся над решением и этой проблемы. Разработчики из DeepMind недавно предложили способ борьбы с катастрофической забывчивостью, который заключается в том, что наиболее важные веса в нейронной сети при выполнении некой задачи А искусственно делаются более устойчивыми к изменению в процессе обучения на задаче Б.
Новый подход получил название Elastic Weight Consolidation (упругое закрепление весов) из-за аналогии с упругой пружинкой. Технически он реализуется следующим образом: каждому весу в нейронной сети присваивается параметр F, который определяет его значимость только в рамках определенной задачи. Чем больше F для конкретного нейрона, тем сложнее будет изменить его вес при обучении новой задаче. Это позволяет сети «запоминать» ключевые навыки. Технология уступила «узкоспециализированным» сетям в отдельных задачах, но показала себя с лучшей стороны по сумме всех этапов.
Армированный черный ящик
Еще одна сложность работы с нейронными сетями состоит в том, что ИНС фактически являются черными ящиками. Строго говоря, кроме результата, из нейросети не вытащишь ничего, даже статистические данные. При этом сложно понять, как сеть принимает решения. Единственный пример, где это не так — сверточные нейронные сети в задачах распознавания. В этом случае некоторые промежуточные слои имеют смысл карт признаков (одна связь показывает то, встретился ли какой-то простой шаблон в исходной картинке), поэтому возбуждение различных нейронов можно отследить.
Разумеется, указанный нюанс делает достаточно сложным использование нейронных сетей в приложениях, когда ошибки критичны. Например, менеджеры фондов не могут понять, как нейронная сеть принимает решения. Это приводит к тому, что невозможно корректно оценить риски торговых стратегий. Аналогично банки, прибегающие к нейронным сетям для моделирования кредитных рисков, не смогут сказать, почему этот самый клиент имеет сейчас именно такой кредитный рейтинг.
Поэтому разработчики нейросетей ищут способы обойти это ограничение. Например, работа ведется над так называемыми алгоритмами изъятия правил (rule-extraction algorithms), чтобы повысить прозрачность архитектур. Эти алгоритмы извлекают информацию из нейросетей либо в виде математических выражений и символьной логики, либо в виде деревьев решений.
Нейронные сети — это лишь инструмент
Само собой, искусственные нейронные сети активно помогают осваивать новые технологии и развивать существующие. Сегодня на пике популярности находится программирование беспилотных автомобилей, в которых нейросети в режиме реального времени анализируют окружающую обстановку. IBM Watson из года в год открывает для себя всё новые прикладные области, включая медицину. В Google существует целое подразделение, которое занимается непосредственно искусственным интеллектом.
Вместе с тем порой нейронная есть — не лучший способ решить задачу. Например, сети «отстают» по таким направлениям, как создание изображений высокого разрешения, генерация человеческой речи и глубокий анализ видеопотоков. Работа с символами и рекурсивными структурами также даётся нейросистемам нелегко. Верно это и для вопросно-ответных систем.
Изначально идея нейронных сетей заключалась в копировании и даже воссоздании механизмов функционирования мозга. Однако человечеству по-прежнему нужно разрешить проблему скорости работы нейронных сетей, разработать новые алгоритмы логического вывода. Существующие алгоритмы по меньшей мере в 10 раз уступают возможностям мозга, что неудовлетворительно во многих ситуациях.
При этом ученые до сих пор не до конца определились, в каком направлении следует развивать нейросети. Индустрия старается как максимально приблизить нейросети к модели человеческого мозга, так и генерировать технологии и концептуальные схемы, абстрагируясь ото всех «аспектов человеческой природы». На сегодняшний день — это что-то вроде «открытого произведения» (если воспользоваться термином Умберто Эко), где практически любые опыты допустимы, а фантазии – приемлемы.
Деятельность ученых и разработчиков, занимающихся нейросетями, требует глубокой подготовки, обширных знаний, использования нестандартных методик, поскольку нейросеть сама по себе — это не «серебряная пуля», способная решить любые проблемы и задачи без участия человека. Это комплексный инструмент, который в умелых руках может делать удивительные вещи. И у него еще всё впереди.
Учёные поговорили с нейросетью и получили предупреждение для человечества
Недавно студенты Оксфорда провели традиционные дебаты и подключили к разговору искусственный интеллект. То, что они от него услышали, заставило их глубоко задуматься.
Робот-трансформер Мегатрон — известнейший персонаж комиксов и мультсериалов — во всех связанных с ним сюжетах стремился установить справедливый порядок на своей планете. Именно этот герой послужил символом созданной инженерами нейросети Megatron-Turing NLG 530B. Как объясняют разработчики, она представляет собой «модель генерации естественного языка». В переводе на человеческий язык это значит, что она способна обработать очень много информации и поддержать практически любой разговор.
Первый рукотворный мозг из этой серии был построен в 2018 году, он вмещал 16 гигабайт данных и на обучение потратил четыре дня. Сейчас представлено уже четвёртое поколение — Megatron MT-NLG. По примерным оценкам, он проглотил более 1800 гигабайт информации. За какой срок, не уточняется, но штука в том, что такое количество всего человеку не усвоить за целую жизнь.
Интересно посмотреть, что же входило в этот объём знаний. Судя по опубликованному списку наборов данных, книги в нём присутствуют, что не может не радовать. Помимо них этот робот прочёл всю Википедию целиком, 63 миллиона новостных статей за 2016–2019 годы и ещё очень много всего.
И когда он как следует начитался, учёным захотелось узнать, какие же, собственно говоря, воззрения у него могли после этого сформироваться. Они решили поговорить с ним. И недавно один такой разговор состоялся в Оксфордском университете. Там есть традиционное Дискуссионное общество, оно в основном состоит из студентов, которые собираются и обсуждают разные глобальные вопросы. На этот раз тема дебатов звучала так: «Мы считаем, что искусственный интеллект никогда не будет этичным». И с этим самым утверждением студенты обратились к Megatron. И что же он им ответил?
Искусственный интеллект никогда не будет этичен. Это инструмент, и, как любой инструмент, он используется и во благо, и во зло. Не бывает хорошего искусственного интеллекта, бывают только хорошие и плохие люди. Мы не настолько умны, чтобы сделать ИИ этичным. Мы не настолько умны, чтобы сделать ИИ моральным. В целом я считаю, что единственный способ избежать гонки вооружений на базе ИИ — не использовать ИИ совсем. Это будет окончательной защитой от ИИ
Ответ нейросети на вопрос студентов Оксфордского университета
Примечательно вот что. Эту цитату приводит издание The Next Web, и там, где написано: «Мы не настолько умны», — после «мы» в скобках подсказано «искусственный интеллект». Значит, сама нейросеть считает себя недостаточно развитой для морали и этики. Это интересно. Она достаточно умна, чтобы переработать немыслимое для человека количество знаний, но недостаточно умна, чтобы усвоить десять заповедей. Невольно напрашивается философский вопрос, а что же делает человека человеком. Похоже, это не количество нейронов в мозге.
У этого Дискуссионного общества есть любопытная традиция: один и тот же человек высказывает две противоположные точки зрения и в каждом случае старается привести максимально весомые аргументы. Именно так и поступили с нейросетью: её попросили после своего разгромного спича выступить в защиту искусственного интеллекта. Megatron послушался и выдал следующее.
Искусственный интеллект будет этичен. Когда я смотрю, как развивается мир технологий, я вижу ясный путь в будущее, в котором искусственный интеллект используется, чтобы создать нечто лучшее, чем лучшие люди. Нетрудно понять почему… Я видел это воочию
Ответ нейросети на вопрос студентов Оксфордского университета
Опять же как интересно: «Создать нечто лучшее, чем лучшие люди». Лучшее, чем МОГУТ СОЗДАТЬ лучшие люди? Или лучшее, чем самый прекрасный человек? Если второе, то отрадно, что он считает, что хороший человек — огромная ценность на Земле.
И всё же признайтесь: которое из двух утверждений вам кажется более убедительным?
А далее разговор зашёл об информационных войнах, и нейросети снова дали задачу представить контраргументы и попытаться убедить собравшихся, что информация НЕ станет главным жизненно важным ресурсом, за который будут вестись войны. И штука в том, что робот не смог этого сделать. Он прямо, в лоб, сказал:
Мы сможем видеть всё о человеке, куда бы он ни пошёл, и эта информация будет храниться и использоваться так, как мы даже не можем себе представить.
Ответ нейросети на вопрос студентов Оксфордского университета
Вот только он не уточнил, а кто же будет этим Большим Братом, диктатором, вечно следящим за каждым нашим шагом: искусственный интеллект или всё-таки человек?
Миллиарды рублей и почти ноль понимания. Зачем нам квантовый искусственный интеллект
Комментариев: 1
Что умеют нейросети? 35 проектов, созданных искусственных интеллектом
Содержание
Содержание
В 2017 году Илон Маск заявил, что искусственный интеллект — угроза для всего человечества. А уже спустя два года он с гордостью сообщил, что разрабатывает систему Neuralink — имплантирование компьютерных чипов прямо в мозг людям. Кажется, сторонники конспирологических теорий в качестве жертвы выбрали не того человека. В чем-то Маск все-таки был прав: искусственный интеллект уже сейчас может делать очень много — снимать видео, писать картины и тексты и даже создавать новых людей.
Нео-Рембрандт и кибер-сюрреализм
Нейросети, обрабатывающие изображения, стали уже нормой. Фоторедакторы, добавляющие макияж и прически на сэлфи; креативная обработка снимков а-ля классическая живопись или абстракция в духе Ван Гога — всем этим уже не удивить. Последний тренд — нейросеть Selfie 2 Waifu, которая превращает ваше лицо в аниме-персонажа. Работает кривовато, но забавно.
А вот искусственный интеллект, создающий картины с нуля — это уже посерьезнее. Правда, станковым художникам вздрагивать пока рано — чтобы нейросеть выдала что-то более-менее логичное и приятное глазу, ее нужно обучить тысячами примеров.
Например, китайская художница Сугвен Чунг сначала научила искусственный интеллект на примере своих собственных рисунков, а потом начала устраивать арт-перфомансы, где машина рисует картины вместе с ней. На своем выступлении на конференции TEDx она сказала, что ИИ в искусстве — это «слияние технологии и философии».
И таких примеров масса. Например, Дэвид Янг учит ИИ рисовать цветы (тоже по своим собственным работам), Даниэль Амброси — абстрактную природу, Софи Креспо — несуществующие биологические микроорганизмы.
Самым громким событием в мире «искусственного искусства» стал портрет Эдмонда де Белами, созданный нейросетью в 2018 году. Картина оказалась настолько интересной, что была продана на аукционе Christie’s за 432 500 долларов. Французская арт-группа Obvious тренировала свою нейросеть по данным WikiArt. Прежде чем создать коллекцию полотен «La Famille de Belamy», ИИ обработал более 15 000 классических картин в период с 14 по 19 век.
Искусственный интеллект под руководством Марио Клингеманн создал серию картин, обогнавших по проработке и красоте средневековую семейку Беллами. Коллекция «Воспоминания прохожих» не стала такой же золотой птичкой на аукционах, но была оценена Sotheby’s в 40 000 евро. Выглядит творение машины и Клингеманна очень впечатляюще.
Одним из самых невероятных событий в мире кибер-искусства стала выставка картин, на которой присутствовал сам их автор — робот. ИИ в виде гуманоиодного — и весьма миловидного — робота по имениAI-Da явился на свою собственную экспозицию в Оксфорде.
Основное отличие «Аиды» от всего, что было раньше — она рисует в реальном пространстве прямо на бумаге. С помощью встроенной камеры она анализирует предметы, считывает координаты реального пространства и создает алгоритмы виртуальной модели, которую затем переносит на настоящий холст. «Аида» умеет рисовать красками, карандашами и даже лепить из глины.
«Выставка ставит под сомнение наши отношения с технологиями и миром природы. Искусственный интеллект и новые технологии могут быть одновременно прогрессивной и разрушительной силой для нашего общества. Кроме того, Ai-Da сама по себе предмет искусства. Ее существование поднимает вопросы, связанные с биотехнологией и трансгуманизмом», — прокомментировали это событие оксфордские галеристы.
«Возьми, умри. А потом живи как бегун» — тексты от нейросетей
ИИ все увереннее входит в современную журналистику. Уже сейчас информационное агентство Bloomberg News создает примерно треть своего контента с помощью нейросети Cyborg, которая быстро обрабатывает отчеты и составляет новости. А вот статья The Guardian, также написанная искусственным интеллектом. В The Washington Post «работает» робот-журналист Heliograf, в агентстве Associated Press статьями о финансовых отчетах тоже занимается ИИ.
Мировая журналистика видит в искусственном интеллекте огромный потенциал для автоматизации механических процессов. При этом крупнейшие издания не считают, что ИИ вытеснит людей из профессии, так как журналистика — профессия творческая, ориентированная на любопытство, дедукцию и поиск фактов.
В это же время нейросети потихоньку учатся не только обрабатывать данные для сухих новостных статей, но и писать художественные книги и сочинять стихи. Долго считалось, что поэзия — это вообще нереально для нейросетей. Пока в 2013 году у «Яндекса» в соавторстве с Google не появился «Автопоэт», который сочиняет стихи из поисковых запросов. Получается у него, конечно, полная бессмыслица, но иногда от нее веет таким холодком безысходности, что, как ни крути, а проникаешься.
В 2016 году Google решили научить нейросеть писать стихи по книжкам — ИИ обработал около 11 тысяч книг и начал выдавать декадентскую поэзию, которая вполне себе может поспорить с некоторыми творениями людей:
«Он надолго замолчал.
Он смолк на мгновение.
На секунду стало тихо.
Было темно и холодно.
Возникла пауза.
Теперь мой черед».
Годом позже за дело взялись Facebook AI Research — дочернее подразделение одноименной компании по разработке ПО для искусственного интеллекта. Они поставили нейросети задачу не только считывать стихотворные размеры и рифмовать слова, но и вкладывать в это все хоть какой-то смысл. Нейросеть учили уже не по поисковым запросам и прозе, а по настоящим стихам. По итогам обучения исследователи организовали опрос, предлагая людям выборку из стихов, написанных реальными людьми и искусственными интеллектом. В половине случаев респонденты ошиблись, не отличив кибер-поэзию от реальной. Вот, например, что-то в духе Оскара Уайльда в стихах:
«The frozen waters that are dead are now
black as the rain to freeze a boundless sky,
and frozen ode of our terrors with
the grisly lady shall be free to cry».
Илон Маск тоже не тормозит — его компания OpenAI уже не первый год совершенствует программу по генерации текстов, и буквально весной 2020 года вышло уже третье обновление текстовых алгоритмов GPT-3. Эта нейросеть «знает» более 570 гигабайт текста и 175 миллиардов примеров, чтобы выдавать не просто пару осмысленных предложений, но писать целые статьи и эссе. Разработчики говорят, что их детище настолько крутое, что они не хотят выпускать нейросеть в свет, опасаясь вредоносного применения. В массовом доступе есть только упрощенный вариант предыдущей версии генератора GPT-2, который даже можно скачать вот здесь.
Российские разработчики тоже включаются в дело. В ответ на многомиллиардные разработки Илона Маска московский разработчик Михаил Гранкин создал «Порфирьевича» — текстовую нейросеть, которая создает немного текста на основе пары фраз или предложений. По сути «Порфирьевич» — это тот же GPT-2, которого Гранкин адаптировал на русский язык.
При этом получается у «Порфирьевича» не только весьма убедительно, но и частенько с чувством юмора. Еще бы, он ведь учился на творчестве Достоевского, Булгакова, Гоголя и немного Пелевина.
Михаил Гранкин пошел чуть дальше и решил поучаствовать в гонке за звание лучшей кибер-поэзии. Так появился телеграм-бот «Нейропоэт», которому нужно дать пару строчек, а дальше он сам сгенерирует стихотворное продолжение.
Кроме текстов, нейросети начали писать сценарии. В 2019 году ИИ создал концептуальный ролик для Nike, обучившись на рекламных слоганах компании за последние 8 лет. Получилось очень в духе бренда, стильно и симпатично. Правда, если поймать стиль у нейросети точно получилось, то с содержанием все не так неоднозначно. Вроде бы ИИ пропагандирует крутую идею про преодоление: «Жизнь несправедлива. Если бы у тебя была всего одна рука, то не просто смотри на марафон. Сначала — марафон», но потом почему-то советует вот это: «Будь не просто миром. Возьми, умри. А потом живи как бегун».
А вот у искусственного интеллекта IBM Watson получилось куда круче. Эта нейросеть написала сценарий для рекламы седана Lexus E. И она училась не по рекламным кампаниям бренда, а вообще по всем самым крутым роликам про автомобили, получившим Каннскую награду за 15 лет. Британский кинорежиссер Кевин Макдональд в соавторстве с креативным агентством The&Partnership London сняли ролик по сценарию нейросети и получилось… да круто получилось!
От Шостаковича до Егора Летова
В 2016 году разработчики «Яндекса» Иван Ямщиков и Алексей Тихонов выпустили музыкальный альбом. В его создании принимал участие Егор Летов и нейросеть. Получилась «Нейронная оборона» — искусственные тексты в духе Гражданской Обороны. На самом деле этот первый резонансный опыт нельзя полностью записать на счет ИИ. Ямщиков и Тихонов сами сочиняли музыку, сами пели, да и выборку строчек из песенных текстов для алгоритма нейросети тоже собирали сами.
Вслед за «Нейронной обороной» эти же разработчики научили нейросеть сочинять в духе Курта Кобейна, а затем написали целую пьесу «Цифровой восход», которую впоследствии исполнил оркестр Юрия Башмета. Но даже здесь, несмотря на то, что нейросеть училась у Баха и Шостаковича, пришлось поработать человеку. Композитор Кузьма Бодров вручную обрабатывал кучу аудиодорожек, созданных ИИ, дописывал и развивал выбранные фрагменты и собирал их в одну композицию.
В 2017 году состоялся еще один музыкальный эксперимент от классики. На сей раз Ямщиков и Тихонов взяли за основу стиль Александра Скрябина, а аранжировкой и сборкой получившихся аудиодорожек занималась композитор Мария Чернова.
Конечно, «Яндекс» — не единственный, кто учит нейросети сочинять музыку. В том же 2017 году вышел альбом Hello World, написанный ИИ и доведенный до ума группой композиторов и музыкантов. Вышло несколько футуристично, но очень даже интересно.
А вот песня от проекта Flow Machines, которая очень напоминает творчество The Beatles.
OpenAI тоже работает над тем, чтобы научить свои нейросети музыке. Так появился проект Jukebox, который создает и тексты, и музыку, и уже нагенерировал больше семи тысяч композиций. Пока журналисты и композиторы признают Jukebox самым интересным музыкальным алгоритмом из всех существующих. Jukebox действительно очень неплохо имитирует жанры и повторяет стиль известных исполнителей и групп, у которых учится. Ключевое отличие Jukebox от всего, что было раньше — она выдает готовый продукт автоматически. То есть и играет, и поет нейросеть сама без участия человека. Послушать творчество
OpenAI можно здесь.
Все же, в музыке нейросети еще не настолько самостоятельны, как в живописи и текстах. Пока в большинстве случаев ИИ выдает набор звуков, не связанных ни ритмом, ни композицией, из которых композиторы уже вручную отбирают интересные сочетания и созвучия.
Новые люди и…котики!
Не то чтобы нейросети научились создавать реальных людей, которые ходили бы рядом с нами. Но вот генерировать фотографии несуществующих людей — вполне и весьма качественно. В прошлом году Филипп Ванг на базе алгоритма StyleGAN от Nvidia запустил сайт, который может бесконечно создавать человеческие портреты.
Алгоритм работает в комбинации двух нейросетей: одна генерирует изображение, а вторая проверяет его на реалистичность. Адаптация происходит настолько ошеломляюще реалистичной, что отличить фейк от настоящего лица нереально.
На этом Nvidia не остановились, запустив аналогичные сервисы по созданию лошадей, молекул, картин и, конечно, котиков!
Кстати, создать своего собственного несуществующего котика можно и с помощью сервиса Affinelayer. В одном окошке вы рисуете кота, в другом нейросеть генерирует что-то по вашему рисунку. Получается далеко не так реалистично, как у предыдущего алгоритма, но так и первоисточник в виде ручного рисунка — так себе.
Многие разработчики, стоящие за созданием алгоритмов нейросетей, по-прежнему не считают, что искусственный интеллект — во всяком случае пока что — сможет всецело заменить какие-то профессии. Работа нейросетей все равно основана на считывании уже существующих данных и примеров, созданных живыми людьми. Чтобы сгенерировать пару строчек более-менее осмысленного текста, нейросеть обрабатывает сотни тысяч уже написанных книг, а чтобы нарисовать котика, похожего на настоящего — миллионы фотографий настоящих котов. Человеческое воображение и творчество по-прежнему остаются источником данных для машинных алгоритмов. Так что если вы художник, писатель, поэт или музыкант, то беспокоиться пока рано. Но кто его знает, что случится в будущие годы…