Что не является звеном биологического круговорота веществ
Что не является звеном биологического круговорота веществ
С момента начала изучения взаимодействия живых организмов с окружающей средой стало ясно, что процессы биогенного массообмена имеют циклический характер (см. рис.2.3.2).
Циклы массообмена различной протяженности в пространстве и неодинаковой длительности во времени образуют динамическую систему биосферы. В.И. Вернадский считал, что история большинства химических элементов, образующих более 99% массы биосферы, может быть понята лишь с учетом круговых миграций (циклов). При этом он подчеркивал, что «эти циклы обратимы лишь в главной части атомов, часть же элементов неизбежно и постоянно выходит из круговорота. Этот выход закономерен, т.е. круговой процесс не является вполне обратимым». Неполная обратимость и несбалансированность миграционных циклов допускают определенные концентрации мигрирующего элемента, к которым организмы могут адаптироваться, но в то же время, обеспечивают вывод избыточного количества элемента из данного цикла.
То есть, целостность биосферы как системы обусловлена непрерывным обменом веществом между её компонентами, в котором ключевую роль играют процессы, связанные с синтезом и разложением органического вещества. Реализуются они как в ходе обмена веществ между живыми организмами и окружающей средой, так и в процессах минерализации органического вещества после смерти организма в целом или отмирания отдельных его органов. Кроме того, свой вклад в круговорот вещества в биосфере сносят и небиогенные по своей природе процессы обмена веществом между различными компонентами географической оболочки.
3.4.2. Элементы биогеохимического круговорота веществ.
Параметры биологического круговорота элементов на суше и в океане
Биологический круговорот веществ представляет собой совокупность процессов поступления химических организмов в живые организмы, биохимического синтеза новых сложных соединений и возвращение элементов в почву, атмосферу и гидросферу (рис.)
Абиогенный и биологический круговороты тесно переплетаются, образуя общепланетарный геохимический круговорот и систему локальных круговоротов вещества. Таким образом, за миллиарды лет биологической истории нашей планеты сложились великий биогеохимический круговорот и дифференциация химических элементов в природе, который является основой нормального функционирования биосферы. То есть в условиях развитой биосферы круговорот веществ направляется совместным действием биологических, геологических и геохимических факторов. Соотношение между ними может быть разным, но действие – обязательно совместным! Именно в этом смысле употребляются термины биогеохимический круговорот веществ и биогеохимические циклы.
Биологический круговорот не является полностью компенсированным замкнутым циклом.
Биологическое, биохимическое и геохимическое значение процессов, осуществляемых в биологическом круговороте веществ, впервые показал В.В. Докучаев. Далее оно было раскрыто в трудах В.И. Вернадского, Б.Б. Полынова, Д.Н. Прянишникова, В.Н. Сукачева, Л.Е. Родина, Н.И. Базилевич, В.А. Ковды и других исследователей.
Прежде чем мы приступим к изучению природных биологических круговоротов химических элементов, необходимо познакомиться с наиболее часто употребляемыми терминами.
Биомасса – масса живого вещества, накопленная к данному моменту времени.
Фитомасса ( или биомасса растений0 – масса живых и отмерших, но сохранивших свое анатомическое строение к данному моменту организмов растительных сообществ на любой конкретной площади или на планете в целом.
Ветошь – отмершие части растений, сохранившие механическую связь с растением.
Опад – количество органического вещества растений, отмерших в надземных и подземных частях на единице площади за единицу времени.
Подстилка – масса многолетних отложений растительных остатков разной степени минерализации.
Прирост – масса организма или сообщества организмов, накопленная на единице площади за единицу времени.
Истинный прирост – отношение величины прироста к величине опада за единицу времени на единице площади.
Первичная продукция – масса живого вещества, создаваемая автотрофами (зелеными растениями) на единице площакди за единицу времени.
Вторичная продукция – масса органического вещества, создаваемая гетеротрофами на единице площади за единицу времени.
Следует различать также емкость и скорость биологического круговорота.
Емкость биологического круговорота – количество химических элементов, находящихся в составе массы зрелого биоценоза (фитоценоза).
Интенсивность биологического круговорота – количество химических элементов, содержащихся в приросте биомассы на единицу площади в единицу времени.
Скорость биологического круговорота – промежуток времени, в течение которого элемент проходит путь от поглощения его живым веществом до выхода из состава живого вещества.
Структура биосферы в самом общем виде представляет собой два крупнейших природных комплекса первого ранга – континентальный и океанический. В современную эпоху суша в целом является элювиальной системой, океан – аккумулятивной системой. История «геохимических отношений» между океаном и сушей отражена в химическом составе почв и океанических вод. Элементы, являющиеся основой жизни – Si, Al, Fe, Mn, C, P, N, Ca, K – аккумулируются в почве, а H, O, Na, Cl, S, Mg – составляют химическую основу океана.
Растения, животные и почвенный покров Мировой суши образуют сложную систему. Связывая и перераспределяя солнечную энергию, углерод атмосферы, влагу, кислород, водород, азот, фосфор, серу, кальций и другие биофильные элементы, эта систама постоянно формирует новую биомассу и генерирует свободный кислород.
В океане существует вторая система (водные растения и животные), выполняющая на планете те же функции связывания солнечной энергии, углерода, азота, фосфора и других биофилов путем образования фитобиомассы, высвобождения кислорода в атмосферу.
Вам уже известно, что существует три формы накопления и перераспределения космической энергии (прежде всего, энергии Солнца) в биосфере.
Суть первой из них в том. Что живые организмы, а через пищевые цепи и связанные с ними животныхе и бактерии строят свои ткани, используя многие химические элементы и их соединения. Среди важнейших из них макроэлементы– H, O, N, P, S, Ca, K, Mg, Si, Al, Mn, а также микроэлементы I, Co, Cu, Zn, Mo и др. При этом происходит избирательная селекция легких изотопов углерода, водорода, кислорода, азота и серы от более тяжелых.
В течении всей своей жизни и даже после смерти живые организмы суши, водной и воздушной среды, находятся в состоянии непрерывного обмена с окружающей средой. При этом суммарная масса и объем продуктов прижизненного обмена организмов и среды (метаболитов) в несколько раз превышают биомассу живого вещества.
Индивидуальная значимость того или иного химического элемента оценивается коэффициентом биологического поглощения, который определяется отношением содержания элемента в золе растений (по массе) к содержанию того же элемента в почве (или в земной коре).
В 1966 году В.А. Ковда предложил использовать для характеристики средней продолжительности общего цикла углерода отношение учтенной фитобиомассы к годичному фотосинтетическому приросту фитомассы. Этот коэффициент характеризует среднюю продолжительность общего цикла синтеза-минерализации биомассы в данной местности (или на суше в целом). Расчеты показали, что доля суши в целом этот цикл укладывается в период от 300-400 до 1000 лет. Соответственно, с этой средней скоростью идет освобождение минеральных соединений, связанных в биомассе, образование и минерализация гумуса в почве.
Для общей оценки биогеохимического значения минеральных компонентов живого вещества биосферы В.А. Ковда предложил сопоставлять запас минеральных веществ биомассы, а также количество минеральных веществ, ежегодно вовлекаемых в оборот с приростом и опадом, с годовым химическим стоком рек. Оказалось, что эти величины сопоставимы. А это означает, что большая часть веществ, растворенных в речных водах, прошла через биологический круговорот системы растения-почвы, до того, как она влилась в геохимическую миграцию с водой в направлении океана или внутриматериковых впадин.
Оказалось, что индексы биогеохимического круговорота очень сильно варьируют в различных климатических условиях, под покровом различных растительных сообществ, при различных условиях естественного дренажа, поэтому Н.И. Базилевич и Л.Е. Родин предложили рассчитывать дополнительный коэффициент, характеризующий интенсивность разложения опада и длительность сохранения подстилки в условиях данного биогеоценоза, равный отношению массы подстилки к массе годичного опада. По данным этих исследователей индексы разложения фитомассы наибольшие в тундре и болотах севера, а наименьшие (около 1) – в степях и полупустынях.
Б.Б. Полынов предложил рассчитывать индекс водной миграции равный отношению количества элемента в минеральном остатке выпаренной речной или грунтовой воды к содержанию того же химического компонента в горных породах (или земной коре). Расчет индексов водной миграции показал, что наиболее подвижными мигрантами в биосфере являются хлор, сера, бор, бром, йод, кальций, натрий, магний, фтор, стронций, цинк, уран, молибден. Наименее подвижны – кремний, алюминий, железо, калий, фосфор, барий, марганец, рубидий, медь, никель, кобальт, мышьяк, литий.
Давайте несколько подробнее рассмотрим основные параметры биогеохимического круговорота на суше.
Общий биогеохимический круговорот элементов включает биогеохимические циклы отдельных химических элементов. Наиболее важное значение в функционировании биосферы в целом и отдельных геосистем более низкого классификационного уровня играют круговороты нескольких химических элементов, самых необходимых для живых организмов в связи с их ролью в составе живого вещества и физиологических процессах. К числу таких наиболее необходимых химических элементов относятся углерод, кислород, азот, сера, фосфор и др..
|