Что не пропускает электричество

Классификация материалов по отношению к способности проводить электрический ток

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Источник

Почему диэлектрики не проводят ток

Для ответа на вопрос «почему же диэлектрик не проводит электрический ток?», сначала давайте вспомним что такое электрический ток, а также назовем условия, соблюдение которых необходимо для возникновения и существования электрического тока. А после этого сравним, как ведут себя проводники и диэлектрики применительно к поиску ответа на данный вопрос.

Что не пропускает электричество

Электрическим током называется упорядоченное, то есть направленное, движение заряженных частиц под действием электрического поля. Таким образом, во-первых, для существования электрического тока необходимо наличие свободных заряженных частиц, способных двигаться направленно. Во-вторых, требуется электрическое поле, которое бы приводило данные заряды в движение. И, конечно, должно существовать некое пространство, в котором бы происходило данное движение заряженных частиц, называемое электрическим током.

Свободные заряженные частицы имеются в большом количестве в проводниках: в металлах, в электролитах, в плазме. В медном проводе, например, это — свободные электроны, в электролите — ионы, например ионы серной кислоты (водород и оксид серы) в свинцово-кислотном аккумуляторе, в плазме — ионы и электроны, именно они движутся при электрическом разряде в ионизированном газе.

Что не пропускает электричество

Для примера возьмем два куска медного провода, и подключим с их помощью маленькую лампочку к батарейке. Что произойдет? Лампочка начнет светиться, а значит в цепи возник постоянный электрический ток. Между концами проводников теперь имеется разность потенциалов созданная батарейкой, а значит внутри проводника начало действовать электрическое поле.

Что не пропускает электричество

Некоторые электроны по ходу своего движения врезаются в атомы (в силу того что тепловое движение колеблет всю структуру атомов вместе с электронами), в результате происходит нагрев проводника — так проявляется электрическое сопротивление проводников.

Свободные электроны в металле

Изучение металлов при помощи рентгеновских лучей, а также другими методами показало, что металлы обладают кристаллической структурой. Это означает, что они состоят из определенным образом расположенных в пространстве атомов или молекул (строю говоря, ионов), создающих правильное чередование по всем трем измерениям.

В этих условиях атомы элементов оказываются расположенными друг к другу настолько близко, что их внешние электроны в той же мере принадлежат данному атому, как и соседним, вследствие чего степень связанности электрона с каким-либо отдельным атомом практически отсутствует.

В зависимости от рода металла по крайней мере один из электронов каждого атома, иногда два электрона, а в немногих случаях и три электрона оказываются свободными в отношении своих перемещений внутри металла, под воздействием наложенных извне сил.

Что не пропускает электричество

А что в диэлектрике? Если вместо медных проводов взять пластик, бумагу или что-нибудь подобное? Электрического тока не возникнет, лампочка не засветится. Почему? Структура диэлектрика такова, что он состоит из нейтральных молекул, которые даже под действием электрического поля не отпускают свои электроны в упорядоченное движение — просто не могут. В диэлектрике нет свободных электронов проводимости как в металле.

Что не пропускает электричество

Внешние электроны в атоме каждой молекулы диэлектрика намертво запакованы, к тому же они участвуют во внутренних связях молекулы, при этом молекулы такого вещества в целом электрически нейтральны. Все что могут молекулы диэлектрика — поляризоваться.

Под действием приложенного к ним электрического поля, связанные электрические заряды каждой молекулы просто сместятся немного от положения равновесия, при этом заряженные частицы останутся каждая в своем атоме. Данное явление смещения зарядов называется поляризацией диэлектрика.

В результате поляризации, у поверхности диэлектрика, поляризованного таким образом приложенным к нему электрическим полем, появляются заряды, которые стремятся своим электрическим полем уменьшить внешнее электрическое поле, вызвавшее поляризацию. Способность диэлектрика ослаблять таким образом внешнее электрическое поле, называется диэлектрической проницаемостью диэлектрика.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Как земля проводит ток и почему заземление всё-таки работает: разгадка секрета

Подписка на рассылку

Заземление – одно из базовых понятий в электротехнике. С его помощью осуществляется принудительное замыкание токопроводящих частей электроустановки в землю. Это обязательное требование для ее безопасной эксплуатации.

Как работает заземление?

Принцип работы заземления базируется на следующих утверждениях:

Благодаря этому в случае пробоя изоляции основной ток уйдет в землю, не затрагивая тело человека.

Почему земля обладает низким сопротивлением?

Закон Ома гласит, что ток во всех случаях протекает по замкнутому контуру. То есть ток движется через электроустановку с подключенной к ней системой заземления от одного из полюсов электростанции до заземляющего электрода. Небольшое заземление всей конструкции не гарантирует малое сопротивление обратной ветви цепи. Почва обладает достаточно большим удельным сопротивлением, поэтому кажется, что тело человека не становится дополнительным элементом заземления.

Стоит учитывать, что сопротивление обратной ветви контура заземления будет небольшим, поскольку между заземляющими электродами электроустановки и электростанции сечение среды очень велико.

Благодаря этому система заземления не только обеспечивает отличную защиту и надежность без обрывов, но и позволяет избежать прокладки доп.кабеля для коммутации соединителей электростанции и объекта.

Что еще нужно знать о заземлении?

Важно понимать, что для качественной работы системы заземления необходимо, чтобы переходной сопротивление, возникающее между землей и заземляющий электродом, было невелико. Этого можно достигнуть благодаря большой площади контакта (для этого выполняют сварку крепко скрепленных друг с другом пластин), а также с помощью установки электродов в грунте ниже глубины его промерзания, поскольку в этом случае его удельное сопротивление резко увеличивается. С реализацией данной задачи отлично справляются вертикальные заземлители.

Сопротивление человеческого тела равняется нескольким сотням Ом, поэтому максимально допустимое сопротивление системы заземления не может составлять более 4 Ом.

Источник

Пластик проводит электричество.

Если кто-то подумал, что это шутка для привлечения внимания к посту или очередное «сенсационное открытие «Британских учёных». Спешу разочаровать история моя и происходит вот прямо сейчас.

Но прежде чем перейти к рассказу, так как тема неоднозначная, чтобы уменьшить количество негатива заранее отвечу на пару очевидных, но напрямую не связанных с основной темой поста комментариев, которые обязательно здесь появятся: 1) Нет, стиралкой уже не пользуемся. Да, сейчас она отключена от электросети; 2) Нет, соседи не жаловались, никого не убило, не у нас, ни у соседей. На днях, как только появится время, отвезу её в ремонт, ну или вызовем мастера на дом. 3) Да, знаю, сам дурак, надо было сразу ремонтировать.

В общем на днях жена в очередной раз запустила машинку, а старший сын в этот момент пошёл в туалет ( у нас раздельный санузел, машинка находится в ванной), но уже через пару минут прибежал обратно с криками о том, что его бъёт током от унитаза! Так как я сам технарь, то естественно я не поверил его словам (как думаю, и большинство пикабушников сейчас не поверят мне ) прочитал ему лекцию о том, что пластмасса и керамика не проводят электрический ток и ему всё показалось. Но через некоторое время посетить приватную комнату отправился уже младший ребёнок и вышел оттуда с точно таким же заявлением, но я же упёртый, я с восьмого класса знаю, что пластик, бетон и керамика не могут проводить электричество поэтому не поверил и ему, решив что он просто повторят за страшим братом. Но на моё счастье забеспокоилась жена и пошла проверять сама. Вернувшись она сказала, что да это так, только с одним уточнением если трогать ладонью, то ничего не чувствуешь, а вот если садиться попой, то возникает чувство покалования сами понимаете в каких местах (для ЛЛ на задней стороне бедра). И вот здесь мой мозг поломался и все знания по физике пошли по пи.

Кто сможет объяснить аномалию? Пока машинка не отремонтирована. готов провести любые эксперименты, по вашим указаниям, с приложением фото-, видео-доказательств.

Источник

Вещества которые не проводят электрический ток называются

Из школьного курса физики известно, что электрический ток представляет собой упорядоченное движение заряженных частиц. При этом должно соблюдаться как минимум два условия — это наличие свободных носителей заряда и присутствие электрического поля. Рассмотрим более подробно какие вещества проводят электрический ток, и какие условия для этого должны быть созданы.

Что не пропускает электричество

Общим для всех вариантов будет обязательное наличие поля, только в этом случае возможно создание силы, которая будет приложена к заряду для его перемещения от одного электрода к другому.

Способность различных веществ проводить электрический ток

Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:

Рассмотрим каждый случай более подробно.

Что не пропускает электричество

Проводники

К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.

Что не пропускает электричество

Металлы как проводники электрического тока

Что не пропускает электричество

Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.

Жидкие проводники электрического тока

Что не пропускает электричество

Под жидкими проводниками понимают кислоты, растворы, электролиты, которые проводят электрический ток. Носителем заряда в данных случаях являются ионы. Необходимо отметить, распространенное убеждение что вода является проводником, в корне неверно. Когда Н2О находиться в чистом состоянии, свободные ионы в ней отсутствуют. Если при помещении в воду электродов наблюдается протекание электрического тока, то это говорит только о том, что в данном случае мы имеем дело с раствором какого-либо вещества.

Что не пропускает электричество

Что не пропускает электричество Что не пропускает электричество Что не пропускает электричество

Сильные и слабые электролиты

Сильные электролиты быстро и полностью ионизируются при растворении, и в растворе не образуются нейтральные молекулы. Примеры сильных электролитов:

У слабых электролитов при растворении в воде ионизируются лишь небольшие фракции молекул, т.е. в их растворах присутствует некое количество нейтральных молекул. Примеры слабых электролитов:

Как определить сильный и слабый электролит?

Сильные электролиты полностью ионизируются, т.к. основными компонентами раствора сильных электролитов являются ионы, и степень диссоциации такого электролита стремится к 1 (т.е. степень диссоциации α ≈ 1). Слабые электролиты ионизируются только частично, т.е. степень диссоциации такого электролита стремится к 0 (или α

Полупроводники

Это особая группа веществ, которая проводит электрический ток при создании определенных условий. В кристаллической решетке полупроводников наблюдается крайне ограниченное наличие свободных носителей зарядов. Но при создании соответствующих условий, например, при воздействии света, понижении или повышении температуры, или каких-либо специфических факторов количество освобожденных носителей возрастает.

Что не пропускает электричество

Вещества, которые проводят электрический ток и относятся к группе полупроводников обладают одной особенностью – под воздействием внешних факторов связанные электроны покидают свое место, и образуют т.н. «дырку». Она имеет положительный заряд. При создании электрического поля электроны и «дырки» двигаются навстречу друг другу, образуя электрический ток. Такая особенность называется электронно-дырочной проводимостью. Наиболее распространенными полупроводниками считаются кремний, германий, селен, галлий, теллур и т.д.

Что такое сахар

Что не пропускает электричество

С точки зрения химии сахар представляет собой дисахарид, формула которого — C12H22O11. Сахар состоит из молекулы сахарозы и молекулы фруктозы. Молекула сахара образуется за счет прочных ковалентных связей между атомами углерода, кислорода и водорода, что является важным моментом для понимания, почему не проводит электрический ток раствор сахара.

Говоря о физических свойствах сахара, следует отметить, что он обладает высокой растворимостью в воде. Так, при 20 °C в 100 г воды можно растворить 203,9 г сахара. При увеличении температуры воды этот показатель также растет, достигая значения 478,2 г при 100 °C. Водный раствор сахара называется сиропом.

Диэлектрики

В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.

Что не пропускает электричество

Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.

Что не пропускает электричество

Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.

Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.

Как известно, электрическим током называется упорядоченное движение носителей электрического заряда. Такими носителями заряда могут выступать электроны — в металлах, в полупроводниках и в газах; ионы — в электролитах и в газах; а в полупроводниках носителями электрического заряда выступают еще и дырки — незаполненные валентные связи в атомах, равные по модулю заряду электрона, но имеющие положительный заряд.

Задаваясь вопросом о том, какие же вещества проводят электрический ток, нам придется порассуждать о том, благодаря чему в первую очередь возникает ток, а именно — о наличии в тех или иных веществах заряженных частиц. Ток смещения рассматривать здесь не будем, поскольку он не является током проводимости, и поэтому не относится напрямую к данному вопросу.

Что не пропускает электричество

По праву главными проводниками электрического тока во всей современной электротехнике выступают металлы. Для металлов характерна слабая связь валентных электронов, то есть электронов внешних энергетических уровней атомов, с ядрами этих атомов.

И как раз благодаря слабости данных связей, при возникновении по какой-нибудь причине в проводнике разности потенциалов (вихревое электрическое поле или приложенное напряжение), электроны эти начинают лавинообразно перемещаться в ту или иную сторону, возникает движение электронов проводимости внутри кристаллической решетки, словно движение «электронного газа».

Характерные представители металлических проводников: медь, алюминий, вольфрам.

Далее по списку — полупроводники. Полупроводники, по способности проводить электрический ток, занимают промежуточное положение между проводниками вроде медных проводов и диэлектриками вроде оргстекла. Здесь один электрон связан сразу с двумя атомами — атомы находятся в ковалентных связях друг с другом — поэтому для того чтобы каждый отдельно рассматриваемый электрон начал двигаться создавая ток, ему сначала необходимо получить энергию для реализации возможности покинуть свой атом.

Электропроводность воды

Вода представляет собой с химической точки зрения соединение H2O. Молекула воды является электрически нейтральной, поэтому участвовать в переносе электрического заряда не может, иными словами чистая вода — это плохой проводник электрического тока, однако сама молекула является электрически полярной, поскольку большая плотность электронов сосредоточена в области атома кислорода.

Для воды электрическая проводимость повышается за счет присутствия в ней различных ионов. Так, даже чистая дистиллированная вода обладает некоторой проводимостью из-за растворения в ней углекислого газа с образованием свободных протонов H+ и отрицательно заряженных гидрокарбонатных групп (HCO3)-. За счет этого процесса электропроводность воды дистиллированной равна 5,5*10-6 См/м. Чтобы понять значимость приведенной цифры, отметим, что электропроводность меди при 20 °C составляет 5,96*107 См/м, что больше электропроводности чистой воды на 13 порядков!

Проводники и непроводники электричества — Электричество — Комплексные работы

Вещества, по которым передаются электрические заряды, называют проводниками электричества.

Хорошие проводники электричества — металлы, почва, растворы солей, кислот или щелочей в воде, графит. Тело человека также проводит электричество.

Из металлов лучшие проводники электричества серебро, медь и алюминий, поэтому провода электрической сети чаще всего делают из меди или алюминия.

Вещества, по которым заряды не передаются, называют непроводниками (или изоляторами). К хорошим изоляторам относятся эбонит, янтарь, фарфор, резина, различные пластмассы, шелк, керосин, масла. Изоляторы (например, резиновую оболочку кабеля) применяют для изоляции проводов, по которым течет ток, от внешних предметов.

Электрическая цепь и ее составные части

Источником электрического тока может служить батарея (гальванический элемент).

На электростанции электрический ток вырабатывают генераторы, приводимые в действие от паровых и гидравлических турбин.

Электродвигатели, лампы, плитки, работающие от электрического тока, называют приемниками или потребителями. Электрическую энергию доставляют к приемнику по проводам.

Чтобы включать и выключать в нужное время приемники электричества, применяют выключатели. Источник тока, приемники и выключатели, соединенные между собой проводами, составляют электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой, т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется или вместо него будет поставлен изолятор, ток в цели прекратится. Такую цепь называют разомкнутой.

Электрические схемы

Изучая географию, вы пользуетесь планом и картой. На плане и карте при помощи условных топографических знаков нанесены леса, селения, горы и реки.

В электротехнике тоже применяют карту-чертеж. На таком чертеже условными обозначениями изображают источники, приемники, выключатели, провода и изделия, из которых состоит электрическая цепь, а также соединения между ними. Такой чертеж называют электрической схемой.

Зная условные обозначения (смотрите таблицу ниже), нетрудно разобраться в электрической схеме. Если на одной и той же схеме повторяются одинаковые обозначения, то около условных знаков ставят числа, а в прилагаемой к схеме табличке указывают размер, тип и назначение.

Условные обозначения составных частей электрической цепи на схемах

«Слесарное дело», И.Г.Спиридонов,Г.П.Буфетов, В.Г.Копелевич

Что не пропускает электричество

В производственных помещениях, помимо выключателей, устанавливают общие рубильники. В больших домах рубильники позволяют отключить сразу целый участок электрической сети (например, этаж или группу квартир). В школе рубильники устанавливают в распределительных закрытых щитах учебных мастерских, где они служат для включения электродвигателей различных станков. Рубильники бывают: одно-, двух- и трехполюсные. Рубильники а — однополюсный; б — двухполюсный;…

В штепсельную розетку при помощи штепсельных вилок включают в электрическую цепь переносные осветительные или соединительные шнуры электробытовых приборов. В основании из изоляционного материала штепсельной розетки укреплены два латунных гнезда, к которым присоединяют провода от электрической сети. Штепсельная розетка Штепсельная вилка состоит из корпуса с отверстием для шнура. В корпусе из изоляционного материала имеются металлические втулки…

Часто приходится присоединять провода электрического шнура к патрону, выключателю, штепсельной розетке и к зажимам электроприборов. Для этого концы подключаемых проводов чаще всего заделывают кольцом, если их надевают на болты, иногда — тычком, когда их вставляют в специальные втулки и крепят винтами. Заделка концов проводов а — кольцом; б — тычком. При заделке кольцом концы проводов…

Что не пропускает электричество

Если прибор не работает, то следует: включением настольной или специальной контрольной лампы проверить, исправна ли штепсельная розетка; при исправной розетке проконтролировать включением той же лампы, не повреждены ли шнур прибора и контакты штепсельной вилки. Если штепсельные розетка и вилка, а также шнур исправны, поврежден сам прибор. Прибор может не действовать, если перегорел нагревательный элемент или…

К основным электрическим величинам электрической цепи относятся сила тока, напряжение и сопротивление. Сила тока Под силой тока понимают электрический заряд, проходящий через поперечное сечение провода в единицу времени. Пользуясь выражениями «сила тока», «сильный ток», «слабый ток», мы должны знать, что означают эти выражения. Выражение «сильный ток» означает, что по цепи в единицу времени протекает большой…

Сопротивление, ток и мощность

Электрическое сопротивление (R) проводника измеряется в Омах и зависит еще и от его геометрических размеров:

S – площадь сечения проводника в м2, l – его длина в метрах. Ток через проводник измеряется в амперах и подчиняется закону Ома для участка цепи:

U – напряжение в вольтах. Мощность, выделяющаяся на проводнике под действием электрического тока, равна:

Теперь возьмем одинаковых размеров проводники из разных материалов и будем пропускать через них один и тот же ток. Как видно из формул, чем больше у проводника удельное сопротивление, тем большая мощность выделится на нем при прохождении электрического тока.

Вот поэтому для одного и того же тока сечение алюминиевого кабеля нужно больше, чем медного. Медный нагреется до температуры, при которой расплавится изоляция, при большем токе.

Применение нихрома для изготовления нагревательных элементов объясняется его высоким удельным сопротивлением и стойкостью к расплавлению. Тугоплавкость и повышенное удельное сопротивление позволили использовать вольфрам для изготовления нитей накала электроламп.

Золото проводит ток чуть лучше алюминия, но применяется в электронике только из-за того, что не образует окислов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *