Что не изучено в мозге
Названы главные тайны человеческого мозга, неподвластные ученым
Развитие человечества тормозит «детектор ошибок»
– Святослав Всеволодович, расскажите, что нового узнали ученые о человеческом мозге за последние годы?
– Недавно на одной из сессий нашего Отделения физиологических наук, посвященной исследованию мозга, мы все пришли к выводу, что в последние годы в этой области знаний не было серьезных прорывов. И такая ситуация наблюдается не только в России, а во всей мировой науке о мозге.
– Ну на какие-то вопросы вы уже дали ответ? Например, действительно ли у среднестатистического человека работает только 10 процентов мозга, а остальное находится в резерве?
– Нет, это не так. Наш мозг использует по-максимуму все, что дано ему от природы.
– Действительно ли мозг – самый энергозатратный орган?
– Да, по сравнению с другими органами. Если взять интеллектуальную мощность мозга, то она будет мощней всех компьютеров, которые существуют на Земле, но потребляет энергии он, как средняя лампочка.
— Известно количество нервных клеток?
– Может, миллиард, а может, сто миллиардов. Их очень сложно подсчитать из-за того, что все они имеют разные формы.
– Известно ли уже о главном отличии человеческого мозга от мозга животного?
Это самый сложный вопрос — ответа на него пока нет. И более того, – не понятно, почему наш мозг возник именно в таком виде, ведь на первых порах для выживания он не нужен был нам такого размера. Мы до сих пор не нашли переходного мостикам между питекантропом и человеком разумным. У нас есть гены неандертальцев, но почему они в какой-то момент свернули в сторону, не пошли дальше вместе с нами, тоже не понятно.
В нашем мозге перемещается «световое пятно»
– Те же самые вопросы задают себе и ваши иностранные коллеги?
– Конечно. Только у нас с ними разные подходы к изучению мозга. Они отталкиваются от конкретных изменений, от приборных измерений, а у нас выработался совсем другой подход. У нас остались физиологические школы Сеченова, Павлова, Бехтерева, которые прежде всего изучали общие закономерности. Наши западные товарищи иногда не знают многого из того, что знаем мы.
Тот же самый Иван Петрович Павлов предложил концепцию «светового пятна». «Если бы мы могли видеть систему возбуждений, распространяющуюся по коре бодрствующего животного (или человека), мы могли бы наблюдать движущееся концентрированное «световое пятно», перемещающееся по коре по мере перехода от одной деятельности к другой и олицетворяющее пункт оптимального возбуждения, без которого невозможно нормальное осуществление деятельности».
Иными словами, в зависимости от рода деятельности у нас в мозге все время включается в работу та или иная область. И раньше считалось, что только она и является главенствующей.
Например, когда человек произносит слова, мы фиксируем возбуждение в его так называемой области Брока. Но ее можно сравнить с динамиком в телевизоре. Основная же работа происходит в большой согласованной сети нейронов, распространенной по всему мозгу. Образно говоря, если у человека возникает потребность что-то сказать, то к делу подключается условный «директор речи», который начинает привлекать к работе нужные отделы мозга, задействуя и область Брока, которую мы можем измерить.
– Таких «директоров» в нашем мозге может быть множество, под каждую функцию, или один?
— Это очень сложный и дискуссионный вопрос. Есть мнение, что существует свой «директор» на каждый вид деятельности. Так сказать, «нейрон бабушки», где записана информация о бабушке, или лицо актрисы и т. д.. Я с этим не согласен. По-видимому, существует сложная сеть систем, адаптивно формирующихся при необходимости осуществить какую-то деятельность. Это одни и те же нейроны, которые активируются по- разному.
Поэтому перед каждой операцией мы на МРТ прежде всего определяем все области, которые могут быть вовлечены в процесс. В 1987 году у нас был пациент, которому проломили череп бутылкой. У него возникла полная афазия (расстройство речи и ее восприятия). Когда вскрыли череп, увидели там, в областях Брока и Вернике (области генерации и восприятия речи) настоящую «кашу». Но, введя электроды недалеко от этих областей, путем лечебных электростимуляций мы перевели задачу формирования и понимания речи на другие клетки. Через несколько недель пациент уже говорил и все понимал. Он до сих пор жив.
Мировой прогресс тормозит «детектор ошибок»
– Слышала, что у вас проводится исследование процесса памяти.
– Памятью занимаются другие российские исследователи, например, члены РАН Константин Владимирович Анохин и Павел Милославович Балабан. Они уже научились стирать у мышей неприятные воспоминания. У нас немного другое направление. Расскажу подробнее об одном из механизмов работы мозга, который в 1986 году открыла прежний научный руководитель нашего института Наталья Петровна Бехтерева. Это так называемый «детектор ошибок».
Представьте, что вы выходите из дома и чувствуете: что-то не так. Такие обыденные вещи, как выключение плиты, электричества мы делаем на автомате. Но стоит нам забыть что-то сделать, как «детектор ошибок» тут же сравнивает ваши действия с тем, что записано у вас в памяти. И сигнализирует, посылая волны дискомфорта откуда-то из подсознания.
Тот же «детектор ошибок» срабатывает у зрелого человека, уже знающего, чем может закончиться бесшабашный прыжок в воду с высокого утеса в непроверенном месте. У маленьких детей такого детектора еще нет, матрица, то есть свод определенных правил, еще не сформировалась, а потому они часто падают, набивают шишки, но, тем не менее, сохраняют способность совершать неожиданные, резкие поступки. Яркий пример тому история Нильса Бора — основателя первой квантовой теории атома, отличавшейся от классической теории. Доводы молодого и талантливого исследователя многим состоявшимся светилам науки казались поначалу абсурдом.
Способность рисковать, не взирая на звания и титулы, сохраняется, как правило, до 35-40, после чего «детектор ошибок», вошедший в полную силу, больше не позволяет совершать «глупости». Ни одно выдающееся открытие в области математики или теоретической физики не было совершено учеными после 40 лет.
50-60-летний человек уже не способен на безумную идею. Он для этого слишком много знает. Это феномен стареющих физиков и математиков. Почему крупнейший математик XX века Андрей Николаевич Колмогоров в возрасте 50 лет ушел преподавать математику школьникам? Он потерял горение, и это вполне физиологическая вещь.
Или взять брежневское политбюро. Ведь там работали люди незаурядного ума. Но со временем на каком-то этапе они уже не могли изменить политику, гиперработа их «детекторов ошибок» не позволила «пропустить» смелую мысль в жизнь. Почему потом и путч провалился? Они были не молодые.
Мы сейчас говорим о продлении жизни и ее качества. В обществе увеличивается процент пожилых людей. Об этом мало кто задумывается, но ведь со старением общества цивилизация резко теряет возможность развития. Все меньше становится молодых и дерзких и больше старых и осторожных. Работа по изучению «детектора ошибок» очень важна, если мы хотим продлевать жизнь и двигать научно-технический прогресс. На один из важнейших вопросов: как защитить человека от гиперопеки «детектора ошибок», ответа пока нет, хотя это одно из магистральных направлений нашей работы.
Кстати, не всегда влияние «детектора ошибок» на нашу жизнь привносит элементы застоя. Если взять специальности юриста, адвоката, врача, где нужно иметь огромный опыт, то здесь этот механизм порой творит настоящие чудеса. Я бы привел в пример жизнь известного кардиолога, академика Владимира Андреевича Алмазова. Он подходил к пациенту и, не касаясь его, мог сказать, что его сердце находится не слева, как у всех, а справа, мог поставить диагноз, просто посмотрев на человека Его детектор ошибок был настолько выдрессирован, что позволял определять тончайшие, невидимые другим отличия между обычными и необычными пациентами.
Как распознать гения
– Можно ли по конфигурации активных зон мозга выявлять людей, которые будут успешны в разных областях науки?
– Нельзя. Есть один фантастический роман, в котором пришельцы с другой планеты хотят найти самого выдающегося полководца. Их приводят к сапожнику. Он идеально подходил к тому, чтобы руководить армией, но вместо этого тачает сапоги. Ему не пришлось использовать свои способности в военном деле. Так что при всех «правильных» данных мозга человеку на пути к его успешности в том или ином деле могут помешать жизненные обстоятельства.
У многих где-то в глубине натуры сокрыт талант. Одним хватает реактивности характера, чтобы его проявить, другим — нет. Есть люди, не блещущие способностями, но, благодаря стремлению, трудолюбию, они выходят вперед, оставляя позади изначально более талантливых.
– Даже явных гениев?
– Про них я не говорю. Сколько бы человек ни трудился, а стать таким, как Леонардо да Винчи, Эйнштейн или Моцарт, без соответствующей генетики все равно не получится. Таких и заставлять заниматься не надо, они сами не смогут сидеть без дела.
– Какие советы вы могли бы дать родителям?
— Нельзя заставлять учить читать и писать раньше, чем ребенок созреет для этого. Это все равно, что на старом компьютере 286-й модели моделировать пентиум. Он будет работать, но очень медленно, скрипя и пыхтя.
Также и детям нельзя раньше времени вкладывать сложные понятия в их маленькие головки. Они усвоят предмет плохо, причем навсегда. Если начать обучать их письму, когда еще не развит моторный центр мозга, у них уйдет много сил на преодоление этой проблемы, и результат все равно будет не из лучших.
– Сколько языков можно преподавать им?
– Одного хватит вполне. Надо оставить время на сказки и игры во дворе.
– Вред от электромагнитных волн для мозг доказан?
— Этот вопрос изучается уже 30 лет. И до сих пор однозначного ответа нет. Но я бы посоветовал, на всякий случай, остерегаться слишком долгих разговоров по мобильному телефону с прикладыванием его к уху. Например, сейчас я вами разговариваю по телефону в режиме громкой связи.
Не рекомендуется носить телефон в нагрудном кармане. Почему? Очень часто бывает так, что при попадании в область слабого сигнала ваш телефон на полную мощность включает излучение, чтобы найти связь. Пока доказательств явного вреда от этого не представлено, но на всякий случай надо избирать разумную линию поведения. Тут можно привести в пример слова одного нобелевского лауреата. Когда его спросили: «Почему вы не начинаете ничего в понедельник, — неужели вы верите в приметы?», он в шутку ответил: «Я в них не верю, но я их боюсь».
Мозг помнит всё? Беседа с нейрофизиологом Ольгой Сварник
Сегодня нам доступны самые разные научные инструменты и самые передовые технологии. Человечество накопило колоссальные знания, как в естественных науках, так и в гуманитарных. Однако человеческий мозг по-прежнему остается «Священным Граалем» ученых и самой сложной, малоизученной областью. Что мешает нам изучить мозг до конца? Как работает человеческая память и действительно ли наш мозг помнит всё? Об этом и многом другом рассказала Ольга Евгеньевна Сварник — нейрофизиолог, кандидат психологических наук, старший научный сотрудник лаборатории психофизиологии им. В.Б. Швыркова Института психологии РАН.
Все мы знаем о том, что мозг – это очень сложная структура. Десятки миллиардов нейронов, триллионы синапсов…Учитывая эту сложность, насколько мы вообще способны изучить мозг и что сегодня является главным камнем преткновения в подобных исследованиях?
Мы, безусловно, можем изучать мозг. И это достаточно длительный процесс, в силу тех особенностей, о которых вы говорите: огромное количество клеток, связей, клетки все очень разные. Исследования последних десятилетий показали, что существует огромное количество типов нейронов, и чем глубже мы погружаемся в эту область, тем больше новых типов находим. Процесс исследования мозга и клеток, которые этот мозг составляют — почти бесконечный и очень интересный.
Важный вопрос — а как мозг связан с психическими процессами? Активность наших нейронов связана с тем, что делает организм. Примечательно не только то, что в мозге есть множество разных типов нейронов, но и то, что они активируются в конкретные моменты, которые являются специфическими для этих нейронов. Есть нейроны, которые будут активны, когда я рассказываю кому-то о мозге, или когда я сама продумываю, как работает мозг, или даже когда я сплю и мне снится что-то о работе мозга. Исследуя эти нейроны, мы получаем доступ к внутреннему миру человека.
Главный камень преткновения в изучении мозга — это то, что огромное количество деталей, которые мы получаем о работе мозга, почему-то не хотят укладываться в некую общепринятую теорию. И есть некоторые изменения в том, что мы понимаем под принципами работы мозга. Существует несколько разных предложений о том, что это такое — принципы работы мозга. И довольно большое число исследователей никак не могут прийти к единому мнению в этом вопросе. Деталей много, а общая картина до сих пор не сложилась. Похожую ситуацию мы можем увидеть и в других науках, например, в физике.
Ольга Евгеньевна, вы изучаете память. Расскажите подробнее об этом. Память локализована где-то в мозге или это ситуативный процесс, и у нас нет конкретной зоны памяти?
Если коротко, то да, никакой зоны памяти нет. При этом, разрушение или нарушение работы определенных зон может приводить к амнезии. Но это не одно и то же. Есть кратковременная память, есть долговременная память, есть память имплицитная, когда мы приобрели какой-то опыт, но не можем ничего об этом сказать и не можем как-то его декларировать. А есть такие виды памяти, где мы можем сказать, например, что знаем, в каком месте находится Эйфелева башня или представляем, как работают нейроны в мозге. Это всё разные аспекты явления, которое принято называть памятью. И когда мы говорим об этих проявлениях работы мозга, мы не можем сказать, что память лежит где-то в определенном месте в мозге.
Один известный пациент с амнезией по имени Генри Молисон перенес операцию по разрушению гиппокампальных структур и некоторых корковых зон, которые были связаны с гиппокампом, в итоге он потерял возможность что-либо запоминать. У него не было впечатления, что он может описывать какие-то случившиеся с ним эпизоды. Но при этом, обучение у него всё же происходило, просто он не мог декларировать эпизоды. Грубо говоря, у пациента информация об эпизодах была, но он просто не мог об этом сказать. И ведь это явление было описано за 50 лет до случая Генри Молисона. Швейцарским врачом Эдуардом Клапаредом был описан очень известный, почти анекдотичный случай. Он постоянно здоровался за руку со своей пациенткой с похожим расстройством. У женщины тоже были проблемы с приобретением новой памяти и возможностью декларировать эпизоды из жизни. Во время одного из таких приветствий врач подложил иглу в свою руку и уколол больную. Впоследствии пациентка об этом совершенно не помнила, но стала избегать рукопожатий с доктором. Получается, что этот опыт у человека всё же остался, и такой опыт мог формировать дальнейшие взаимодействия этой женщины с миром.
В 2018 г. Ольга Сварник опубликовала научно-популярную книгу «Мозг за минуту».
А можно ли сказать, что наш мозг вообще ничего не забывает, и то, что произошло однажды, остается навсегда?
В современной нейронауке тенденция такова, что проблема памяти — это прежде всего проблема доступа к ней. Дело ведь не в том, что память как-то потерялась. Если мы представим, что любой приобретённый опыт — это формирование какой-то нейронной группы, которая теперь с ним связана, то получается, что вернуться к этому опыту — значит активировать эту группу. Если мы наслаиваем всё больше и больше других нейронных групп, уходя в нашем опыте от той первоначальной группы, то получается, что мы не можем к ней вернуться за счет того, что там уже есть другие наслоения и ветви этого «дерева опыта» изрядно разрослись.
Опыты на животных показывают, что можно заактивировать ту старую группу, которая была еще до всех этих наслоений, и вернуться к тому моменту. И в этом смысле конечно можно сказать, что да, мозг действительно хранит всё, если был сложившийся опыт. Вокруг нас сейчас есть масса краткосрочных моментов, которые на какой-то короткий период тоже «фиксируются» нашим мозгом, но при этом не переходят в долговременную фазу. А вот если всё перешло уже в долговременную память, то возможность потерять такую память — это прежде всего сложность найти к ней доступ, либо другой вариант — если клетки, связанные с этой памятью, разрушены.
Как объяснить случаи, когда какой-то запах возвращает тебя к таким далеким временам, о которых ты, казалось бы, уже не помнишь, но вдруг память оживает вновь? Запах — это сфера подсознания? И как он связан с памятью?
Бо́льшая часть того, что есть в нашем мозге, работает, не выходя на уровень, который принято называть сознанием. Но это всё равно составляет наш опыт.
В плане возможности вернуться к старым нейронным группам того опыта, который был до всех наслоений, запах играет универсальную и очень интересную роль. То есть запах помогает возродить то, к чему мы сами уже не можем подобраться: в силу завязанности предыдущего опыта на множестве других вещей, с которыми мы познакомились в процессе жизни.
Почему так происходит? Ответа на этот вопрос я, честно говоря не знаю, но он давно меня интересует. Даже какая-то картинка крайне редко приводит к подобному оживлению эпизодов нашего прошлого, а запах имеет такую уникальную возможность. В художественной литературе этот феномен был многократно и красочно описан, но с научной точки зрения трудно предположить, что бы это могло быть. Почему именно запах, даже не звук, обладает такими характеристиками? Ответ на этот вопрос мне бы тоже хотелось знать.
Почему мы на долгие годы можем запомнить какие-то незначительные детали из далекого прошлого, которые, казалось бы, не несут никакой смысловой нагрузки (например, зеленые носки, увиденные на ком-то давным-давно, или пробежавшую мимо собаку)? Или здесь, как говорил Фрейд, незначительных деталей быть не может и за этим воспоминанием стоит какое-то более серьезное, спрятанное переживание?
Такие воспоминания связаны с каким-то общим состоянием организма на тот момент. Возможно, то состояние по своим эмоциональным характеристикам действительно имело большую значимость. Наверное, такая особенность нашей памяти сыграла свою роль в эволюции: организмы, которые фиксировали с помощью своих нейронов как можно больше деталей, вероятно получали большее преимущество в эволюции.
Другой аспект — это то, что состояние, столь важное на тот момент, могло возвращаться снова и снова, когда мы мысленно думали о пережитом. И вот в момент одного из таких возвратов могли добавиться эти зелёные носки или ещё что-то. Возможно, прямого отношения к той ситуации они и не имели, но наша память, спустя какое-то время, связав это и наслоив ещё что-то, «решила», что эти зелёные носки были очень важны для той ситуации. Есть разные нюансы касательно того, как наша память претерпевает разнообразные модификации с каждый реактивацией тех нейронных групп, которые лежат в её основе. Это тоже очень интересные процессы.
Получается, что по сути самым верным является именно первое воспоминание, а все остальные возвраты, воспоминания об этом моменте, которые наслоились позже, ложные? Может быть, все наши воспоминания вообще являются неверными и мало связаны с тем, что происходило на самом деле?
Очень важно сказать, что это за виды памяти. Явление переделки памяти за счет возврата к активации самой ранней нейронной группы связано всё-таки с эпизодической памятью. А семантическая память работает как бы наоборот: если мы что-то учим, например, пытаемся запомнить все столицы мира, то здесь повторение только на пользу и это нашу память укрепляет. (Под семантической памятью подразумеваются знания (например, о том, что Эйфелева башня в Париже), а не сам эпизод моего первого видения Эйфелевой башни). А вот сам эпизод, свидетелем которого мы были, имеет тенденцию видоизменяться, приобретать детали, которых не было, и терять те, что были. Многочисленные исследования показывают, что эпизодической памяти, возможно, не стоит сильно доверять. Были ли эпизоды из нашего детства именно такими, какими мы их запомнили — этот вопрос не так прост. Вполне может быть, что похожие вещи были, но выглядели совсем не так, как мы их запомнили.
Лекция Ольги Сварник «Сон и память» в БЕН РАН.
Ольга Евгеньевна, вы работаете в Институте психологии РАН, в Московском Институте психоанализа, активно ведете преподавательскую деятельность Что вас, как ученого, больше всего привлекает в нейронауке?
Как преподаватель, я рассказываю о принципах работы мозга разным студентам: от физиков до психологов. Как учёный, я исследую клетки, которые есть в мозге на самых разных уровнях: это и нейрогенетические изменения, и изменения электрической активности, а также изменения суммарной активности мозга, регистрируемые с помощью электроэнцефалограммы на людях.
Меня очень увлекает описание и исследование поведения, а также поиск некоторых общих закономерностей для людей и для животных. Мои исследования показывают, что процесс приобретения какого-то опыта (когда организм сталкивается с какой-то новой для него ситуацией) приводит к тому, что у нас, прежде всего, реактивируются те нейронные группы, которые связаны с чем-то похожим: уже имеющимся предыдущим опытом.
Наблюдается интересная закономерность — как часто и стабильно мы, приобретая что-то новое, возвращаемся к старому. И люди, и животные, приобретя новый опыт и найдя решение для новой ситуации, уже добавив что-то новое в свой мозг, снова и снова возвращаются к старому: к ранее приобретенным формам поведения. Как будто снова и снова тестируют старую модель поведения, пытаясь убедиться, а точно ли она не работает? Ведь раньше работала? Эксперименты показывает, что люди часто даже не отдают себе в этом отчет. И вопрос о том, насколько далеко мы возвращаемся в старое и почему мы это делаем, меня сейчас занимает больше всего.
Зачем ученые исследуют человеческий мозг и что знают о нем на самом деле
Человечество начало исследовать мозг и задумываться о его назначении задолго до появления науки в современном виде. Археологические находки говорят, что в 3000-2000 годах до нашей эры люди уже активно практиковали трепанации черепа — по всей видимости, как способ профилактики головных болей, эпилепсии и расстройств психики. Древнегреческие врачи и анатомы Герофил и Эрасистрат не только называли мозг центром нервной системы, но и считали, что интеллект «зарождается» в мозжечке. В Средние века итальянский хирург Мондино де Луцци предположил, что мозг состоит из трех отделов — или «пузырьков»: передний отвечает за чувства, средний — за воображение, а в заднем хранятся воспоминания.
Вклад в этот процесс вносили не только ученые. В 1848 году американский строитель Финеас Гейдж, работая на прокладке железной дороги, получил страшную травму: металлический штырь вошел в его череп под глазницей, а вышел — на границе лобной и теменной костей. Однако мужчина относительно благополучно прожил потом больше десяти лет. Правда, знакомые утверждали, что в результате инцидента он изменился — например, стал как будто более вспыльчивым. И хотя в этой истории есть немало белых пятен, она в свое время вызвала бурную дискуссию о функциях различных зон мозга.
В наши дни изучение мозга — вотчина не одной, а множества отраслей наук. Нейробиология занимается вопросами, связанными с работой рецепторов. Нейрофизиология — особенностями протекания физиологических процессов в мозге. Психофизиология — соотношением мозга и психики. Нейрофармакология — влиянием лекарственных средств на нервную систему, в том числе на мозг. Существует даже относительно молодое направление — нейроэкономика: она изучает процессы выбора и принятия решений. Более фундаментальные когнитивные нейронауки сосредоточены на исследовании разных типов восприятия, сложных мыслительных процессов и связанных с ними феноменов, которые касаются речи, слушания музыки, просмотра фильмов и т.д.
Зачем это делается?
Логично предположить, что любой орган человеческого тела исследуют в первую очередь для того, чтобы научиться его эффективно лечить в случае необходимости. Но мозг — система слишком сложная и интересная, чтобы ограничиваться утилитарным подходом. В университетах мира существуют сотни лабораторий, которые изучают совершенно разные аспекты мозговой деятельности. Одни фокусируются на конкретных типах расстройств психики — например, на шизофрении. Другие — на сне. Третьи — на эмоциях. Четвертые хотят выяснить, что происходит с мозгом, когда человек испытывает стресс или употребляет алкоголь: этим занимается в том числе лаборатория психофизиологии Института психологии РАН.
Результатом таких исследований далеко не всегда становится метод решения какой-то конкретной проблемы, связанной с мозговой деятельностью. Нейроученые нередко получают информацию, которая главным образом помогает нам лучше понять специфику отношений между людьми и выяснить, к примеру, по каким признакам мы ранжируем окружающих на «своих» и «чужих». Что делать с этим знанием дальше, как его применить на практике — хороший вопрос.
С другой стороны, опыты со «стандартным» человеческим мозгом и натуралистическими (естественными) стимулами дают ученым шанс разобраться, почему у кого-то мозг работает иначе. В финском Университете Аалто ставят эксперименты с участием людей с синдромом Аспергера. Как правило, эта особенность развития сильно затрагивает эмоциональные функции, способность к социальному взаимодействию. Опыты показывают, что у «обычного» человека, когда он смотрит, как общаются другие люди, наблюдается высокий уровень синхронизации в сенсорных зонах мозга, в зонах, участвующих в обработке социальной информации и процессах формирования эмоций. А у человека с синдромом Аспергера такая синхронизация выражена значительно меньше. Ученые надеются со временем разобраться, как помочь адаптироваться в социуме тем, кому изначально это сделать сложнее.
Есть лаборатории, которые занимаются одновременно и прикладными, и фундаментальными исследованиями. В 2012 году ученые из Еврейского университета в Иерусалиме создали устройство, позволяющее незрячим людям «видеть» с помощью слуха. Оно состояло из очков и небольшой камеры, которая фиксировала визуальную информацию, а специальная программа преобразовывала ее в звуковые сигналы. Таким образом человек, лишенный зрения, мог распознать находящиеся поблизости бытовые предметы, других людей и даже крупные буквы. При этом разработчики устройства обнаружили, что в мозге того, кто учится «видеть» с помощью слуха, активируются те же потоки, что и у того, кто видит традиционным способом — глазами. Таким образом научный мир столкнулся с принципиально важной, основополагающей проблемой: действительно ли зрительная кора головного мозга отвечает именно за зрение в привычном понимании? И что такое вообще — зрение?
Также предполагается, что одним из результатов скрупулезного, разностороннего изучения мозга станет возможность создания искусственного интеллекта. В 2005 году стартовал знаменитый многомиллиардный проект Blue Brain Project, целью которого было сделать компьютерную модель человеческого мозга и смоделировать сознание. Пока воз и ныне там, а многие представители научного мира настроены достаточно скептично — хотя бы потому, что мы не знаем точно, что такое сознание. К тому же существует и технические ограничения: для того, чтобы имитировать мозг кошки на самом базовом уровне, понадобился один из самых больших суперкомпьютеров в мире. Человеческий мозг, разумеется, устроен намного сложнее.
Методы и эксперименты
Существующие на сегодняшний день методы исследования мозга можно ранжировать, опираясь на два критерия. Первый — частота снятия информации: она варьируется от миллисекунды до нескольких секунд. Второй — пространственное разрешение: насколько детально мы можем рассмотреть сам мозг. Так, электроэнцефалография способна собирать данные с очень большой частотой. Зато фМРТ (функциональная магнитно-резонансная томография) позволяет охватывать квадратные миллиметры мозга, а это довольно много, поскольку в одном квадратном миллиметре — около 100 000 нейронов.
Также существуют магнитная энцефалография, позитронно-эмиссионная томография, транскраниальная магнитная стимуляция. Методы обычно совершенствуются в сторону неинвазивности: нам хочется как можно больше узнать о мозге живого человека с минимальными последствиями для его здоровья и психологического состояния. При этом именно с появлением фМРТ ученые стали исследовать буквально все подряд аспекты мозговой деятельности. Мы можем взять практически любой тип поведения и быть уверенными в том, что в мире обязательно найдется лаборатория, которая изучает его с помощью фМРТ.
Разобраться, как ученые это делают, можно на примере самого базового эксперимента. Допустим, мы хотим узнать, различается ли мозговая активность человека, когда он смотрит на лица других людей и на дома. Отбирается множество картинок с изображением самых разных домов и самых разных лиц. Они перемешиваются, а их порядок — рандомизируется. Необходимо, чтобы в последовательности не было никаких закономерностей: если, к примеру, после трех домов всегда будет появляться лицо, встанет вопрос о достоверности результатов эксперимента.
Прежде чем поместить испытуемого в сканер фМРТ, с него нужно снять все металлические украшения и предупредить, что лучше не складывать руки в кольцо. Во время сканирования происходит быстрое изменение магнитного поля, что, согласно законам физики, индуцирует электрический ток в замкнутой петле. Ощущения — не смертельно неприятные, но те, кто пробовал, повторять обычно не хотят. В течение тридцати-сорока минут человек лежит в сканере и смотрит на появляющиеся на экране изображения домов и лиц. Важно, чтобы в процессе он не заснул: проходить через такие эксперименты часто довольно скучно. Зато они предполагают награду — допустим, пару бесплатных билетов в кино.
На этом более или менее интересная часть заканчивается и начинается сложная и неблагодарная: ученому предстоит обработать полученную информацию разными статистическими методами, чтобы результат можно было оформить в статью и опубликовать ее в научном журнале. Главный подвох здесь заключается в том, что существует несколько десятков тысяч способов скомбинировать разные ступени преобразования данных, поэтому добиться ложноположительного результата не так уж и сложно.
В 2009 году в Сан-Франциско провели опыт, ставший впоследствии легендарным. Ученые положили в сканер фМРТ мертвого атлантического лосося и показали ему фотографии людей в различных социальных ситуациях. При подсчете данных выяснилось, что мозг лосося не просто реагирует на стимулы: рыба испытывала эмоции. Разумеется, на самом деле мертвый лосось не способен на эмпатию, но за счет погрешности — или так называемого статистического шума, возникающего при анализе собранных с помощью фМРТ данных, мы можем получить значимый эффект. Кто ищет — тот всегда найдет.
До недавнего времени проблема усугублялась еще и тем, что в западные журналы брали статьи, описывающие в основном только положительные результаты экспериментов. Если гипотеза лаборатории не подтверждалась, полученные данные фактически летели в мусорное ведро. Теперь представим: сто лабораторий поставили одинаковый эксперимент. Чисто статистически у пяти из них вполне могут получиться позитивные результаты. Статья, написанная представителями такой лаборатории, будет опубликована, даже если в 95 оставшихся опыты показали отрицательный результат. Для борьбы с такими искажениями в наши дни появилась важная опция: теперь исследование можно перерегистрировать с гарантией публикации вне зависимости от результата — главное, чтобы все было выполнено четко по плану.
Как читать новости науки в СМИ, чтобы не впасть в заблуждение?
Специфика работы ученого заключается в том, что он должен знать очень много — пусть даже только в рамках своей области. Однако чем больше ты знаешь, тем больше сомневаешься. И тем выше вероятность, что рано или поздно ты столкнешься с чем-то, что в корне противоречит твоим убеждениям. Поэтому, общаясь со СМИ, ученые почти никогда не используют слово «однозначно». Вместо этого они говорят: «скорее всего», «вероятно», «мы можем предположить».
Для журналистов и читателей такие формулировки звучат, мягко говоря, не очень заманчиво. Психика человека устроена так, что ему хочется точно знать, из чего сделано его тело — в том числе мозг. Вероятности его либо не интересуют, либо вызывают тревогу. Более того, многие люди в принципе не читают новости дальше заголовка. В результате информация о последних научных исследованиях часто доходит до нас в искаженном виде — в том числе потому, что СМИ стремятся собрать больше просмотров, но опасаются отпугнуть аудиторию слишком расплывчатыми формулировками.
В 2007 году по российским СМИ прокатилась волна заметок об ученых лондонского University College, установивших, что алкоголь улучшает работу мозга. При ближайшем рассмотрении оказывалось, что, поскольку алкоголь улучшает приток крови к мозгу, что, в свою очередь, действительно коррелирует с улучшением умственных способностей, положительный эффект, может, и будет, но негативные последствия от чрезмерного употребления алкоголя его явно перевесят.
Еще несколько лет назад в западной прессе широко освещался проект No More Woof, создатели которого предлагали использовать инструмент на основе электроэнцефалографии, чтобы считывать мысли собак и «переводить» их на человеческий язык. Но, во-первых, ЭЭГ — далеко не самый точный метод сбора данных. Во-вторых, откуда мы можем знать, каким образом мысли собак должны передаваться с помощью английской речи? В-третьих, нет исследований, которые бы доказывали, что все животные, включая человека и собаку, говорят на разных диалектах одного глобального языка. Но СМИ скандировали: ура, мы наконец-то научимся понимать наших Шариков и Бобиков!
Чтобы не дать обмануть себя опубликованной в СМИ новости из мира науки (в том числе — нейронауки), нужно соблюдать несколько простых правил:
Во-первых, не ленитесь прочитать не только заголовок, но и весь текст.
Во-вторых, опасайтесь категоричных утверждений. Допустим, если в материале говорится, будто ученые нашли в мозге «зону любви», учитывайте, что один из современных трендов — исследовать мозг не как конструктор, составленный из полностью автономных элементов, а как сложную сеть (complex network). Да и «любовь» — понятие слишком неоднозначное, чтобы вывести для него какое-то универсальное определение.
В-третьих, обращайте внимание на источник. Журналисты часто ссылаются не на исходную статью в научном журнале, а на публикацию на другом новостном интернет-портале или даже в блоге. Пытливому уму такая ссылка должна показаться неубедительной.
В-четвертых, задайте интернету вопрос: «Кто все эти люди?». Под лейблом «ученые» в СМИ могут появляться как подлинные сотрудники известных лабораторий, так и энтузиасты-любители, собирающие деньги на свое «революционное» открытие с помощью краудфандинговых платформ.
В-пятых, найдите оригинал. Из абстракта (краткого изложения сути статьи) часто бывает понятно, что именно ученые доказали и какими методами. Да, подписка на очень многие журналы — платная. Но есть сайты PubMed и Google Scholar, позволяющие выполнять поиск по текстам научных публикаций.
Вопреки стереотипам наука не может дать нам стопроцентной гарантии чего бы то ни было. Не может жирной, нестираемой линией отделить истину от всего остального. Но она может максимально приблизиться к истине за счет множества повторяющихся, проведенных в разных частях земного шара экспериментов, результаты которых постепенно будут сходиться в одной точке. Примерно. С определенной вероятностью.