Что называют высотой треугольника
Элементы треугольника. Высоты
Определение
Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.
Свойства
1. Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон
2. Высоты треугольника (или их продолжения) пересекаются в одной точке, называемой ортоцентром
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному
4. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники
Некоторые формулы, связанные с высотой треугольника
где — площадь треугольника, — длина стороны треугольника, на которую опущена высота
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Высота треугольника
Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника
Содержание
Свойства
(Для доказательства тождества следует воспользоваться формулами
В качестве точки E следует взять пересечение двух высот треугольника.)
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Основные соотношения
где — площадь треугольника, — длина стороны треугольника, на которую опущена высота.
где — основание.
Теорема о высоте прямоугольного треугольника
Если высота длиной h, проведённая из вершины прямого угла, делит гипотенузу длиной c на отрезки m и n, соответствующие b и a, то верны следующие равенства:
Мнемоническое стихотворение
См. также
Ссылки
Полезное
Смотреть что такое «Высота треугольника» в других словарях:
ВЫСОТА — ВЫСОТА, высоты, мн. высоты, высот, жен. 1. только ед. Протяжение снизу вверх, вышина. Высота дома. Башня большой высоты. || (мн. только спец. научн.). Расстояние от земной поверхности, измеряемое по вертикальной линии снизу вверх. Аэроплан летал… … Толковый словарь Ушакова
Высота (геометрия) — У этого термина существуют и другие значения, см. Высота (значения). Высота в элементарной геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или на… … Википедия
высота — ы/; мн. высо/ты; ж. см. тж. высотка, высотный 1) Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. Высота/ дома, дерева, горы. Высота/ волны. Плотина высотой в сто пят … Словарь многих выражений
высота — ы; мн. высоты; ж. 1. Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. В. дома, дерева, горы. В. волны. Плотина высотой в сто пятьдесят метров. Измерить, определить высоту чего л. 2. Расстояние от какой л. поверхности до… … Энциклопедический словарь
высота исходного треугольника резьбы — (H) Расстояние между вершиной и основанием исходного треугольника резьбы в направлении, перпендикулярном к оси резьбы. [ГОСТ 11708 82 (СТ СЭВ 2631 80)] Тематики нормы взаимозаменяемости Обобщающие термины основные элементы и параметры резьбы EN… … Справочник технического переводчика
Высота (значения) — Высота размер или расстояние в вертикальном направлении. Другие значения: В астрономии: Высота светила угол между плоскостью математического горизонта и направлением на светило. В военном деле: Высота возвышенность рельефа. В… … Википедия
ВЫСОТА (в геометрии) — ВЫСОТА, в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а… … Энциклопедический словарь
ВЫСОТА — в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а также… … Большой Энциклопедический словарь
ВЫСОТА — ВЫСОТА, ы, мн. оты, от, отам, жен. 1. Величина, протяжённость чего н. от нижней точки до верхней. В. кирпичной кладки. В. прибоя. В. циклона. 2. Пространство, расстояние от земли вверх. Смотреть в высоту. Самолёт набирает высоту. Лететь на… … Толковый словарь Ожегова
Высота (геометрич.) — Высота в геометрии, отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или продолжение основания, а также длина этого отрезка. В. призмы, цилиндра, шарового слоя,… … Большая советская энциклопедия
Высота треугольника
В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.
На рисунке BF — высота, проведенная из вершины B к стороне AC.
Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.
Высоты остроугольного треугольника расположены строго внутри треугольника.
Соответственно, точка пересечения высот также находится внутри треугольника.
В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).
Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).
AC — высота, проведенная из вершины С к стороне AB.
AB — высота, проведенная из вершины B к стороне AC.
AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.
Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).
В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.
Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.
AK — высота, проведенная к стороне BC.
BF — высота, проведенная к продолжению стороны АС.
CD — высота, проведенная к продолжению стороны AB.
Точка пересечения высот тупоугольного треугольника также находится вне треугольника:
Высота треугольника онлайн
С помощю этого онлайн калькулятора можно найти высоту треугольника. Для нахождения высоты треугольника введите известные элементы треугольника и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.
Открыть онлайн калькулятор |
Высота треугольника. Определение
Определение 1. Отрезок, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.
Высота треугольника может содержаться внутри треугольника (Рис.1), совпадать со стороной треугольника (при прямоугольном треугольнике высота совпадает с катетом (Рис.2) ), проходить вне треугольника (при тупоугольном треугольнике(Рис.3)).
Теорема о пересечении высот треугольника
Теорема 1. Все три высоты треугольника (или их продолжения) пересекаются в одной точке.
Далее из \( \small AA_1⊥BC \) следует, что \( \small AA_1⊥B_2C_2 \) поскольку \( \small BC \ ǁ \ B_2C_2 \). Аналогично, \( \small BB_1⊥A_2C_2, \) \( \small CC_1⊥A_2B_2. \) Получили, что \( \small AA_1,\) \( \small BB_1, \) \( \small CC_1\) являются серединными перпендикулярами сторон \( \small B_2C_2, \) \( \small A_2C_2, \) \( \small A_2B_2, \) соответственно. Но серединные перпендикуляры треугольника пересекаются в одной точке (см. статью Серединные перпендикуляры к сторонам треугольника). Следовательно высоты треугольника или их продолжения пересекаются в одной точке.
Точка пересечения высот треугольника называется ортоцентром.
Высота треугольника по основанию и площади
Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).
Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:
Пример 1. Сторона треугольника равна \( \small a=5 \) а площадь \( \small S=7. \) Найти высоту треугольника.
Применим формулу (1). Подставляя значения \( \small a \) и \( \small S \) в (1), получим:
Ответ:
Высота треугольника по трем сторонам
Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):
где \( \small a, \ b, \ c \) стороны треугольника а полупериод \( \small p \) вычисляется из формулы:
Высота треугольника, отпущенная на сторону \( \small a\) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:
Пример 2. Известны стороны треугольника: \( \small a=5, \) \( \small b= 4, \) \( \small c=7. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)
Решение: Найдем, сначала полупериод \( \small p \) треугольника из формулы (3):
Ответ:
Высота треугольника по двум сторонам и радиусу описанной окружности
Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:
Далее, из теоремы синусов имеем:
Подставляя (6) в (7), получим:
Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:
\(\small \max (b,c) ≤2R Пример 3. Известны стороны треугольника: \( \small b=7, \) \( \small c= 3 \) и радиус описанной окружности \( \small R=4. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \) |
Решение: Проверим сначала условие (9):
Высота треугольника по стороне и прилежащему к ней углу
Найдем высоту \( \small h_a \) треугольника на рисунке 7. Из теоремы синусов имеем:
Пример 4. Известны сторона \( \small c=12 \) треугольника и прилежащий угол \( \small \angle B=30°. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)
Решение: Для нахождения высоты треугольника подставим значения \( \small c=12 \) и \( \small \angle B=30° \) в (11). Имеем:
Высота треугольника – определение, обозначение
Определение
Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя сторонами составляют треугольник.
Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, не стандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.
Рис. 1. Высота тупоугольного треугольника.
Как правило, высота треугольника имеет обозначение буквой h. Так же обозначается высота и в других фигурах.
Как найти высоту треугольника?
Существует три стандартных способа нахождения высоты треугольника:
Через теорему Пифагора
Этот способ применяется для равносторонних и равнобедренных треугольников. Разберем решение для равнобедренного треугольника, а потом скажем, почему это же решение справедливо для равностороннего.
Дано: равнобедренный треугольник АВС с основанием АС. АВ=5, АС=8. Найти высоту треугольника.
Рис. 2. Рисунок к задаче.
Для равнобедренного треугольника важно знать, какая именно сторона является основанием. Это определяет боковые стороны, которое должны быть равны, а так же высоту, на которую действую некоторые свойства.
Свойства высоты равнобедренного треугольника, проведенной к основания:
Высоту обозначим, как ВD. DС найдем как половину от основания, так как высота точкой D делит основание пополам. DС=4
Высота это перпендикуляр, значит ВDС – прямоугольный треугольник, а высота ВН является катетом этого треугольника.
Любой равносторонний треугольник является равнобедренным, только основание у него равно боковым сторонам. То есть, можно использовать тот же порядок действий.
Через площадь треугольника
Этим способом можно пользоваться для любого треугольника. Чтобы им воспользоваться, нужно знать значение площади треугольника и стороны, к которой проведена высота.
Высоты в треугольнике не равны, поэтому для соответствующей стороны получится вычислить соответствующую высоту.
Через тригонометрическую функцию
Третий способ подойдет, если известна сторона и угол при основании. Для этого придется воспользоваться тригонометрической функцией.
Рис. 3. Рисунок к задаче.
Угол известен, как и сторона. Выразим высоту треугольника:
Значение косинуса в общем случае берется из таблиц Брадиса, но значения тригонометрических функций для 30,45 и 60 градусов – табличные числа.
Что мы узнали?
Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.