Что называют величиной вакуума

Физический вакуум

Ва́куум (от лат. vacuum — пустота) — среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d >1) вакуум.

Следует различать понятия физического вакуума и технического вакуума.

Содержание

Технический вакуум

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (так называемых ложных вакуумов) является одним из главных основ инфляционной теории Большого взрыва.

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему. А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

Источник

Информация о вакуумных системах и компонентах: понятие вакуума, примеры использования

Общая информация: понятие вакуума и единицы измерения

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м 2 ). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Источник

Вакуум

Что называют величиной вакуума

Что называют величиной вакуума

Следует различать понятия физического вакуума и технического вакуума.

Содержание

Технический вакуум

Что называют величиной вакуума

Что называют величиной вакуума

Что называют величиной вакуума

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Мерой степени разрежения вакуума служит длина свободного пробега молекул газа Что называют величиной вакуума» border=»0″ />, связанной с их взаимными столкновениями в газе, и характерного линейного размера Что называют величиной вакуумасосуда, в котором находится газ.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр ) говорят о достижении низкого вакуума (Что называют величиной вакуума) ( 10 16 молекул на 1 см³ ). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При Что называют величиной вакуумамолекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме ( 10 −5 торр ) ( 10 11 молекул на 1 см³ ). Сверхвысокий вакуум соответствует давлению 10 −9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 −16 торр и ниже ( 1 молекула на 1 см³ ).

Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами. Для поглощения газов и создания необходимой степени вакуума используются геттеры. Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

Вакуум широко применяется в электровакуумных приборах — радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира [1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

Источник

Понятие, уровни вакуума и единицы измерения Vuototecnica. КИП-Сервис

Абсолютное и относительное измерение вакуума

Давления, измеренные на шкале, которая использует нулевое значение в качестве опорной точки, называются абсолютными давлениями. Атмосферное давление на поверхности Земли изменяется, но составляет приблизительно 10 5 Па (1000 мбар). Это абсолютное давление, потому что оно выражается в отношении нулевого.

Датчик предназначенный для измерения давления, выраженного в отношении атмосферного давления, и, таким образом, показывающий ноль, когда его измерительный порт содержит молекулы при атмосферном давлении. Измерения проводимые таким датчиком известны как измерение давления в относительном режиме. Таким образом, разница между значением абсолютного давления и значением избыточного является переменным значением атмосферного:

Абсолютное = избыточное + атмосферное.

Чтобы избежать серьезных ошибок, важно знать какой режим измерения вакуума используется: абсолютный или относительный. Обратите внимание, что эталонная линия для измерений калибровочной моды не является прямой, что иллюстрирует изменчивость атмосферного давления.

Артериальное давление

Еще один пример, где мы сталкиваемся с давлением в повседневной жизни – это измерение кровяного давления.

Артериальное давление – это кровяное давление, т.е. давление, которое кровь оказывает на стенки сосудов, в данном случае – артерий.

Если вы измерили артериальное давление и оно у вас 120 на 80, то все хорошо. Если 90 на 50 или 240 на 180, то вам уже точно будет неинтересно разбираться, в чем это давление измеряется и что это вообще значит.

Артериальное давление — давление крови на стенки артерий

Тем не менее, возникает вопрос: 120 на 80 чего именно? Паскалей, миллиметров ртутного столба, атмосфер или еще каких-то единиц измерения?

Артериальное давление измеряется в миллиметрах ртутного столба. Оно определяет превышение давления жидкости в кровеносной системе над атмосферным давлением.

Но почему в измерении артериального давления две цифры?

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Дело в том, что кровь движется в сосудах не равномерно, а толчками. Первая цифра (120) называется систолическим давлением. Это давление на стенки сосудов в момент сокращения сердечной мышцы, его величина – наибольшая. Вторая цифра (80) определяет наименьшее значение и называется диастолическим давлением.

При измерении фиксируются значения систолического и диастолического давлений. Например, для здорового человека типичное значение артериального давления составляет 120 на 80 миллиметров ртутного столба. Это означает, что систолическое давление равно 120 мм. рт. ст., а диастолическое – 80 мм рт. ст. Разница между систолическим и диастолическим давлениями называется пульсовым давлением.

Историческая справка

Интересно отметить, что понятие «абсолютный вакуум» полностью отвергалось известными древнегреческими философами, например Аристотелем. Кроме того, о существовании атмосферного давления не было известно до начала XVII века. Только с приходом Нового времени начали проводиться эксперименты с трубками, наполненными водой и ртутью, которые показали, что земная атмосфера оказывает давление на все окружающие тела. В частности, в 1648 году Блез Паскаль смог измерить с помощью ртутного барометра давление на высоте 1000 метров над уровнем моря. Измеренное значение оказалось намного меньшим, чем на уровне моря, тем самым ученый доказал существование атмосферного давления.

Что называют величиной вакуума

Впервые эксперимент, который явно продемонстрировал силу атмосферного давления, а также подчеркнул концепцию вакуума, был проведен в Германии в 1654 году, в настоящее время он известен под названием «эксперимент с магдебургскими сферами». В 1654 году немецкий физик Отто фон Герике смог плотно соединить две металлические полусферы диаметром всего 30 см, а затем выкачал из полученной конструкции воздух, создав тем самым частичный вакуум. История повествует, что две упряжки по 8 лошадей в каждой, которые тянули в противоположные стороны, не смогли разъединить эти сферы.

Что называют величиной вакуума

Частичный вакуум

Если переводить указанные цифры с языка давлений на язык количества частиц, тогда следует сказать, что при 1 атм. в 1 м 3 воздуха содержится приблизительно 10 25 молекул. Любое уменьшение названной концентрации молекул приводит к образованию частичного вакуума.

Типы вакуума

Существует классификация разряжения в зависимости от определения понятия «ва́куум» и от степени разряжения.

По определению различается 3 основных вида вакуума:

Технический вакуум – это газовое пространство с низким давлением. Другими словами, воздушная среда, которая имеет давление ниже атмосферного, является техническим вакуумом.

Физический вакуум – понятие квантовой физики, это пространство с энергией, которая близится к нулевому значению. А это бывает не только в пустом объеме, но и в твердых телах, и в ядре атома.

По степени разряжения существуют такие типы вакуума:

Для каждого из них существую пределы давления в разных единицах.

Источник

Вакуум: основные понятия, определения и типы вакуума

Вакуум понятие относительное. Учеными доказано, что абсолютного вакуума не существует. Есть несколько понятий вакуума и его интерпретаций.

Что такое вакуум

Ва́куум с латинского «vacuum» обозначает пустой, т.е. это пустое пространство. Но создать пустое пространство невозможно. Поэтому принято считать вакуумом объем, в котором почти нет никаких веществ. Количество молекул в вакууме находится в таком небольшом количестве, что может достигать нескольких десятков.

Из-за малого количество молекул, их внутренняя энергия или импульсы стремятся к нулю. Поэтому считается, что в вакууме практически отсутствуют различные процессы, такие как электрический ток, трение и прочее.

В физике ва́куум – это пространство с газом, давление которого ниже атмосферного давления. Другими словами, это разряжение.

Качество вакуума или его глубина измеряется давлением. А точнее, отношением длины свободного пробега частицы к линейным размерам емкости, в которой он создан. С увеличением степени разряжения уменьшается число столкновений молекул в пространстве. Длина свободного пробега частиц увеличивается и зависит только от размеров сосуда, со стенками которого они сталкиваются. Следовательно, вакуумом можно назвать состояние, когда частицы газа, находясь в определенном объеме, не соприкасаются друг с другом.

Основная единица измерения вакуумного давления – Па. Но паскаль достаточно большая величина для измерения разряжения, поэтому в физике часто используются другие величины, такие как бар, мм.рт.ст., торр, физическая атмосфера.

Соотношение единиц измерения вакуума в физике.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *