Что называют угловым ускорением

Угловое ускорение

Система понятий кинематики включает в себя также такую величину как угловое ускорение тела. Дадим ей определение, рассмотрим основные аспекты с использованием примеров.

Основные понятия

Угловое ускорение – величина, характеризующая изменение скорости с течением времени.

Числовое значение ускорения в заданный момент времени есть первая производная от угловой скорости или вторая производная от угла поворота по времени.

Ускоренное вращение тела – это вращение, при котором угловая скорость (ее модуль) возрастает с течением времени.

Замедленное вращение тела – это вращение, при котором угловая скорость (ее модуль) убывает с течением времени.

В общем, довольно просто заметить, что, если ω и ε имеют одинаковые знаки, наблюдается ускоренное вращение, а, когда противоположные знаки – замедленное.

Что называют угловым ускорением

Закон равнопеременного вращения

Проинтегрируем вторично и получим формулу, выражающую закон равнопеременного вращения:

Вращение является равноускоренным, когда ω и ε имеют одинаковые знаки.

Вращение является равнозамедленным, когда ω и ε противоположны по знаку.

Практические примеры

На рисунке 2 заданы различные типы вращения гироскопа (волчка). С учетом соответствующих подписей необходимо указать, какой рисунок верно демонстрирует направление углового ускорения.

Что называют угловым ускорением

Запишем выражения для угловой скорости и углового ускорения заданной точки:

Полное ускорение запишем как:

Источник

Угловое ускорение

Угловое ускорение – это псевдовекторная физическая величина, которая равна первой производной от псевдовектора угловой скорости по времени:

Что называют угловым ускорением.

Угловое ускорение характеризует силу изменения модуля и направления угловой скорости при движении твердого тела.

Ускорение точки твердого тела при свободном движении.

К понятию углового ускорения можно прийти, изучая определение ускорения точки твердого тела, находящегося в свободном движении. Определение скорости точки тела В (по формуле Эйлера) в свободном движении:

Что называют угловым ускорением.

где Что называют угловым ускорением— скорость точки тела А, которая была принята как полюс; Что называют угловым ускорением— псевдовектор угловой скорости тела; Что называют угловым ускорением— вектор, который был выпущен из полюса в точку – его скорость определяем. Продифференцировав это выражение по времени данное выражение, получаем:

Что называют угловым ускорением.

где Что называют угловым ускорением— является ускорением полюса А; Что называют угловым ускорением— псевдовектором углового ускорения.

Составляющая ускорения точки В, которая определяется через угловое ускорение называется вращательным ускорением точки В около полюса А.

Что называют угловым ускорением.

Последнее слагаемое в полученной формуле, которое зависит от угловой скорости, называется осестремительным ускорением точки В вокруг полюса А.

Что называют угловым ускорением.

Угловое ускорение при вращении тела вокруг неподвижной оси.

Что называют угловым ускорением

Когда происходит вращение тела около неподвижной оси, которая проходит через недвижимые точки тела О1 и О2, производные орта оси вращения = 0:

Что называют угловым ускорением.

Отсюда вектор углового ускорения вычисляется тривиально через вторую производную угла поворота

Что называют угловым ускорениемили Что называют угловым ускорением.

где Что называют угловым ускорением— это алгебраическая величина углового ускорения.

Здесь псевдовектор углового ускорения (и угловая скорость) идет по оси вращения тела. В случае наличия одинакового знака у первой и второй производной угла поворота:

Что называют угловым ускорением,

значит, вектор углового ускорения и вектор угловой скорости имеют одинаковое направление и тело имеет ускоренное вращение. Иначе, при Что называют угловым ускорением, векторы угловой скорости и углового ускорения имеют противоположные направления, а, значит, тело вращается замедленно.

В теормехе обычно вводится понятие угловой скорости и углового ускорения, когда рассматривается вращение тела вокруг не двигающейся оси. При чем, для решения задачи используют зависимость от времени угла поворота тела

Отсюда закон движения точки тела можно выразить натурально, как длина дуги окружности, которую прошла точка, совершая поворот тела от определенного исходного положения φ0 = φ (t0)

где R является расстоянием от точки до оси вращения.

Продифференцировав вышеуказанное выражение по времени, найдем алгебраическую скорость точки:

Что называют угловым ускорением.

где Что называют угловым ускорениемявляется алгебраической величиной скорости угловой.

Через геометрическую сумму тангенциального и нормального ускорения можно выразить ускорение точки тела при вращении:

Что называют угловым ускорением.

При этом тангенциальное ускорение выходит в виде производной от алгебраической скорости точки:

Что называют угловым ускорением.

где Что называют угловым ускорениемявляется алгебраической величиной углового ускорения. А при помощи ниже приведенной формулы определим нормальное ускорение точки тела:

Что называют угловым ускорением.

Источник

iSopromat.ru

Что называют угловым ускорением

Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела:

Угловая скорость

Угловой скоростью называют скорость вращения тела, определяющаяся приращением угла поворота тела за промежуток времени.

Обозначение: ω (омега).

Формулы угловой скорости

Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:

Что называют угловым ускорением

Быстрота изменения угла φ (перемещения из положения П1 в положение П2) – это и есть угловая скорость:

Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость

Приняв k как единичный орт положительного направления оси, получим:

Что называют угловым ускорением

Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.

Угловое ускорение

Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:

Что называют угловым ускорением

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает, а при отрицательном вращение замедляется.

Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это 2π радиан:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

Понятие об угловом ускорении. Формулы кинематики и динамики вращения. Пример задачи

Вращение тел является одним из важных типов механического движения в технике и природе. В отличие от линейного перемещения, оно описывается собственным набором кинематических характеристик. Одной из них является угловое ускорение. Охарактеризуем эту величину в статье.

Движение вращения

Что называют угловым ускорением

Прежде чем говорить об угловом ускорении, опишем тип движения, к которому оно применяется. Речь идет о вращении, которое представляет собой перемещение тел по круговым траекториям. Чтобы вращение происходило, необходимо выполнение некоторых условий:

Что называют угловым ускорением Вам будет интересно: Что такое пункт: понятие, определение, варианты значений слова и синонимы

Примерами этого типа движения являются различные аттракционы, например карусель. В технике вращение проявляет себя при движении колес и валов. В природе самым ярким примером этого типа движения является вращение планет вокруг собственной оси и вокруг Солнца. Роль центростремительной силы в названных примерах играют силы межатомного взаимодействия в твердых телах и гравитационное взаимодействие.

Что называют угловым ускорением

Кинематические характеристики вращения

К этим характеристикам относятся три величины: угловое ускорение, угловая скорость и угол поворота. Будем обозначать их греческими символами α, ω и θ соответственно.

Так как тело движется по окружности, то удобно рассчитывать угол θ, на который оно повернется за определенное время. Этот угол выражается в радианах (реже в градусах). Поскольку окружность имеет 2 × pi радиан, то можно записать равенство, связывающее θ с длиной дуги L поворота:

Что называют угловым ускорением

Угловая скорость ω, как и ее линейный аналог, описывает быстроту поворота вокруг оси, то есть она определяется согласно следующему выражению:

Величина ω¯ является векторной. Направлена она вдоль оси вращения. Единицей ее измерения является радиан в секунду (рад/с).

Вектор α¯ направлен в сторону изменения вектора скорости ω¯. Далее будет сказано, что угловое ускорение направлено в сторону вектора момента силы. Измеряют эту величину в радианах в квадратную секунду (рад/с2).

Момент силы и ускорение

Что называют угловым ускорением

Если вспомнить закон Ньютона, который связывает в единое равенство силу и линейное ускорение, то, перенеся этот закон на случай вращения, можно записать следующее выражение:

Кинематические уравнения

Что называют угловым ускорением

Чтобы понять, какую важную роль играет угловое ускорение для описания движения вращения, запишем формулы, связывающие изученные выше кинематические величины.

В случае равноускоренного вращения справедливы следующие математические соотношения:

Если воспользоваться приведенной в начале статьи формулой связи между L и θ, то можно получить выражение для α через линейное ускорение a:

Если α является постоянным, то при возрастании расстояния от оси вращения r будет пропорциональным образом увеличиваться линейное ускорение a. Именно поэтому для вращения пользуются угловыми характеристиками, в отличие от линейных, они не изменяются с увеличением или уменьшением r.

Пример задачи

Металлический вал, вращаясь с частотой 2 000 оборотов в секунду, начал замедлять свое движение и через 1 минуту полностью остановился. Необходимо рассчитать, с каким угловым ускорением происходил процесс торможения вала. Также следует вычислить количество оборотов, которые вал сделал до того, как остановиться.

Процесс замедления вращения описывается таким выражением:

Начальная угловая скорость ω0 определяется через частоту вращения f таким образом:

Поскольку время торможения нам известно, тогда получаем значение ускорения α:

α = ω0 / t = 2 × pi × f / t = 209,33 рад/с2

Это число следует взять со знаком минус, поскольку речь идет о торможении системы, а не об ее ускорении.

Для определения числа оборотов, которые вал сделает во время торможения, применим выражение:

Полученное значение угла поворота θ в радианах просто переводится в число сделанных оборотов валом до его полной остановки с помощью простого деления на 2 × pi:

n = θ / (2 × pi) = 60 001 оборот.

Источник

Формула для вычисления углового ускорения

Угловое ускорение – что это?

Угловое ускорение \(\varepsilon\) – физическая величина, характеризующая изменение угловой скорости при движении тела.

Единица измерения: \(\lbrack\varepsilon\rbrack=\frac1<с^2>\) или \(с^<-2>\)

Угловая скорость

Круговым движением точки вокруг оси называют движение, где траектория точки – окружность с центром, который лежит на оси вращения, перпендикулярной плоскости окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Угловая скорость \(\omega\) – векторная физическая величина, характеризующая скорость изменения угла поворота при круговом движении точки или твердого тела.

При движении по окружности (круговом движении) скорость меняет свое направление, значит такое движение не может считаться равномерным, оно ускоренное или равноускоренное (в частных случаях).

Вектор угловой скорости направлен вдоль оси вращения.

Основные формулы для вычисления угловой скорости

Для равномерного вращения (когда за равные отрезки времени тело поворачивается на один и тот же угол):

Единица измерения угловой скорости в СИ: \(\lbrack\omega\rbrack=\frac<рад>с\)

Связь между угловой скоростью и нормальным (центростремительным) ускорением

Центростремительное (нормальное) ускорение \(a_n\) – это составляющая полного ускорения, которая характеризует изменение направления вектора скорости при криволинейном движении. Другим компонентом полного ускорения является тангенциальное ускорение, оно характеризует изменение величины скорости.

Центростремительное ускорение определяется по формуле:

где \(V\) – скорость движения, \(R\) – радиус окружности.

Единица измерения в СИ: \(\lbrack a_n\rbrack=\frac м<с^2>\)

Итак, формула связывающая эти две величины:

Основные формулы для расчета углового ускорения

Значение углового ускорения в определенный момент времени вычисляется как первая производная от угловой скорости или вторая производная от угла поворота по времени.

Угловое ускорение маховика

Среднее угловое ускорение

Средним угловым ускорением тела называют отношение изменения угловой скорости к отрезку времени, за который оно совершилось.

Тангенциальное ускорение

Тангенциальным (касательным) ускорением \(a_\tau\) называют ту составляющую полного ускорения, которая направлена по касательной к траектории движения в данной точке. Тангенциальное ускорение описывает изменение скорости по модулю при криволинейном движении.

Мгновенное угловое ускорение

Мгновенное угловое ускорение \(\alpha\) есть первая производная угловой скорости по времени или вторая производная углового перемещения по времени.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *