Что называют цепной реакцией
Содержание:
Лавинообразное появление новых ядер в уране возможно только для изотопа 235U. Впервые о явлении заговорили в 1934 благодаря работам Жолио-Кюри. Они, в 1939 году, вместе с Коварски провели бомбардировку урана и, кроме осколков деления, обнаружили высвобождение 2-3 нейтронов. При попадании в другие ядра последние снова делятся с выделением уже 6-9 элементарных частиц.
В процессе исследований и экспериментов Ферми, супруги Кюри, Штрассман, Фриш, Ган установили: попавший в ядро 235U нейтрон делит его в два-три раза. Вследствие распада выделяется около 200 МэВ энергии, 165 МэВ уходит на перемещение так называемых осколков, остальную с собой уносят гамма-кванты.
При распаде 1 кг 235-го изотопа урана высвобождается 80*10 12 Дж энергии – в миллионы больше, чем 1 кг сожжённого каменного угля. С середины XX века начали вести работы по освобождению и обузданию этого энергетического потенциала для получения электрической энергии.
Проблемы при протекании ЦЯРД
Энергии высвободившихся нейтронов достаточно для расщепления 235U, на долю которого припадает около 0,7% встречающегося в природе урана. Элемента с массовым числом 238 – свыше 99%. Для протекания ЦЯРД нужно несколько десятков килограмм очищенного или обогащённого 235U, иначе практически вся энергия нейтронов уходит на столкновение с ураном-238.
Вторая беда – неуправляемость процессом. В области деления урана температура повышается до миллионов градусов, мгновенно испаряя все вещества вокруг. Образуется раскалённый газообразный шар, сносящий и сжигающий всё вокруг. Контролировать процесс научились благодаря установкам, названным ядерными реакторами.
Цепна́я я́дерная реа́кция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.
Содержание
Механизм энерговыделения
Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.
Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций — это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).
Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счет неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.
Цепные реакции
Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы. Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны, не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой. Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.
Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.
Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием. Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.
Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно 2,5). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике. Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в ядерном оружии.
Цепная реакция
К цепным реакциям в химии относятся процессы окисления (горение, взрыв), крекинга, полимеризации и другие, широко применяющиеся в химической и нефтяной промышленности.
Полезное
Смотреть что такое «Цепная реакция» в других словарях:
ЦЕПНАЯ РЕАКЦИЯ — ЦЕПНАЯ РЕАКЦИЯ, самоподдерживающийся процесс ядерного ДЕЛЕНИЯ, при котором одна реакция приводит к началу второй, вторая третьей и так далее. Для начала реакции необходимы критические условия, то есть масса материала, способного к расщеплению,… … Научно-технический энциклопедический словарь
цепная реакция — Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или) ускорению цепочки… … Справочник технического переводчика
цепная реакция — 1) Реакция, вызывающая большое число превращений молекул исходного вещества. 2) Самоподдерживающаяся реакция деления атомных ядер тяжёлых элементов под действием нейтронов. 3) разг. О ряде поступков, состояний и т.п., при котором один или одно… … Словарь многих выражений
цепная реакция — chain reaction цепная реакция. Всякий биологический (или химико физический) процесс, составленный серией взаимосвязанных процессов, где продукт (или энергия) каждого этапа является участником следующего этапа, что приводит к поддержанию и (или)… … Молекулярная биология и генетика. Толковый словарь.
цепная реакция — grandininė reakcija statusas T sritis chemija apibrėžtis Cheminė ar branduolinė reakcija, kurios aktyvusis centras sukelia ilgą kitimų grandinę. atitikmenys: angl. chain reaction rus. цепная реакция … Chemijos terminų aiškinamasis žodynas
цепная реакция — grandininė reakcija statusas T sritis fizika atitikmenys: angl. chain reaction vok. Kettenkernreaktion, f; Kettenreaktion, f rus. цепная реакция, f pranc. réaction en chaîne, f … Fizikos terminų žodynas
Цепная реакция — Разг. О непрекращающемся, бесконтрольном процессе вовлечения кого л., чего л. во что л. БМС 1998, 489; БТС, 1462 … Большой словарь русских поговорок
Цепная реакция (значения) — Цепная реакция научное понятие. А также «Цепная реакция» название нескольких художественных фильмов: «Цепная реакция» фильм СССР 1962 года. «Цепная реакция» французская криминальная кинокомедия 1963 года. «Цепная… … Википедия
Цепная реакция (фильм) — Цепная реакция научное понятие. А также «Цепная реакция» название нескольких художественных фильмов: «Цепная реакция» фильм СССР 1962 года. «Цепная реакция» французская криминальная кинокомедия 1963 года. «Цепная реакция» фильм Австралии… … Википедия
Цепная реакция (фильм — Цепная реакция (фильм, 1963) У этого термина существуют и другие значения, см. Цепная реакция (значения). Цепная реакция Carambolages … Википедия
Цепные ядерные реакции.
Ядерные цепные реакции — это ядерные реакции, в которых частицы, вызывающие их, образуются и как продукты этих реакций. Такой реакцией является деление урана и некоторых трансурановых элементов (например, 23 9 Pu) под действием нейтронов. Впервые она была осуществлена Э. Ферми в 1942 г. После открытия деления ядер У. Зинн, Л. Силард и Г. Н. Флеров показали, что при делении ядра урана U вылетает больше одного нейтрона: n + U → А + В + v. Здесь А и В — осколки деления с массовыми числами А от 90 до 150, v — число вторичных нейтронов.
Коэффициент размножения нейтронов. Для течения цепной реакции необходимо, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось со временем, или чтобы коэффициент размножения нейтронов k был больше или равен единице.
Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо поколении к числу нейтронов предшествующего поколения. Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого поколения и рождаются новые нейтроны.
Если k ≥ 1, то число нейтронов увеличивается с течением времени или остается постоянным, и цепная реакция идет. При k > 1 число нейтронов убывает, и цепная реакция невозможна.
В силу ряда причин из всех ядер, встречающихся в природе, для осуществления цепной ядерной реакции пригодны лишь ядра изотопа . Коэффициент размножения определяется: 1) захватом медленных нейтронов ядрами последующим делением и захватом быстрых нейтронов ядрами и , также с последующим делением; 2) захватом нейтронов без деления ядрами урана; 3) захватом нейтронов продуктами деления, замедлителем и конструктивными элементами установки; 4) вылетом нейтронов из делящегося вещества наружу.
Образование плутония. В результате захвата изотопом урана нейтрона образуется радиоактивный изотоп с периодом полураспада 23 мин. При распаде возникает первый трансурановый элемент нептуний:
.
β-радиоактивный нептуний (с периодом полураспада около двух дней), испуская электрон, превращается в следующий трансурановый элемент — плутоний:
.
Период полураспада плутония 24000 лет, и его важнейшим свойством является способность делиться под влиянием медленных нейтронов так же, как и изотоп С помощью плутония может быть осуществлена цепная реакция с выделением огромного количества энергии.
Цепная реакция сопровождается выделением огромной энергии; при делении каждого ядра выделяется 200 МэВ. При делении 1 г ядер урана выделяется такая же энергия, как при сжигании 3 т угля или 2,5 т нефти.
Лекция 26. Цепные реакции
Цепные реакции – это сложные превращения реагентов в продукты. Особенностью цепных реакций является их цикличность. Эта цикличность обусловлена регулярным чередованием реакций с участием активных центров. Этими активными центрами могут быть атомы и свободные радикалы с высокой реакционной способностью, а также ионы и возбуждённые молекулы.
Различают реакции с энергетическими и материальными цепями в зависимости от природы активных центров. В первом случае происходит возбуждение молекулы без разрыва связей. Во втором – гомолитический распад молекулы с образованием частиц с неспаренными электронами.
Примеров цепных реакций можно привести множество: взаимодействие водорода и углеводородов с хлором и бромом, термическое разложение озона, крекинг углеводородов, реакции полимеризации и поликонденсации, ядерные реакции.
Любая цепная реакция трёхстадийна. На первой стадии образуются исходные активные центры, т.е. происходит зарождение цепи. Эти активные центры взаимодействуют со стабильными молекулами с образованием одной или нескольких активных частиц. Эта стадия имеет название стадии развития или продолжения цепи. Наконец, две активные частицы могут рекомбинировать в стабильную молекулу, в результате чего цепь обрывается, поэтому эта стадия – стадия обрыва цепи.
Первая стадия – наиболее энергоёмкая и, как правило, инициируется квантом света, участием фотосенсибилизатора, либо неустойчивыми соединениями типа пероксидов и азосоединений, а также парами легколетучих металлов (натрий, ртуть и др.) и многими неорганическими соединениями.
Стадия развития цепи может включать в себя реакции продолжения и развития цепи. Энергии активации этих элементарных стадий невелики, поэтому они протекают со значительными скоростями. К этим реакциям относятся:
1. Взаимодействие атома или свободного радикала с молекулой реагента с образованием новых свободных радикалов;
2. Взаимодействие атома или свободного радикала с молекулой реагента с образованием нового радикала и продукта реакции;
3. Мономолекулярная изомеризация радикала;
4. Мономолекулярный распад свободного радикала с образованием нового радикала и продукта;
5. Взаимодействие свободных радикалов с образованием нового радикала и продукта.
Если на стадии развития цепи протекают реакции, в результате которых число активных центров вырастает, то говорят о разветвлении цепей.
И, наконец, стадии обрыва цепи, это элементарные стадии, приводящие к исчезновению свободной валентности. Обрыв цепи может быть гомогенным (с участием инертной частицы) или гетерогенным (взаимодействие радикалов со стенкой реактора). Следует иметь в виду, что рекомбинация радикалов в объёме без участия третьей частицы невозможна, т.к. образованная молекула будет находиться в возбуждённом состоянии и требуется «отбор» лишней энергии для стабилизации молекулы, полученной рекомбинацией радикалов.
Процессы обрыва цепи в объёме протекают при больших давлениях, и скорость обрыва будет иметь второй порядок по концентрациям активных центров. В этом случае обрыв цепи называют квадратичным.
В общем случае любую цепную реакцию можно представить в виде следующей схемы:
реагент + αХ → продукт + β Y
Х и Y – активные центры.
α и β – целые числа большие или равные 0.
Исходя из этой схемы, стадии можно представить следующим образом:
α=0, β≠0 – зарождение цепи.
α=β – продолжение цепи.
Неразветвлённые цепные реакции.
Неразветвлённые цепные реакции – это реакции, включающие в себя стадии зарождения, продолжения и обрыва цепи.
Теория этих реакций разработана школой Боденштейна. Типичным, классическим примером этого типа реакций является синтез HCl из H 2 и С l 2 при действии света.
Например, в радикальной реакции хлорирования алкана:
звено цепи включает 2 элементарные реакции:
Сумма этих элементарных реакций приводит к молекулярной реакции. Число полных звеньев, приходящихся в среднем на каждый активный центр, образовавшийся в реакции зарождения цепи – средняя длина цепи. Так, в приведённой реакции:
В феноменологической (формальной) кинетике цепных реакций возможны два подхода. Первый основан на решении дифференциальных и алгебраических уравнений, полученных на основе закона действующих масс и механизма данной цепной реакции. Для неразветвлённых цепных реакций применим метод стационарных концентраций Боденштейна. Второй подход основан на вероятностном характере химических процессов вообще и цепных реакций в частности.
Любая активная частица, образовавшаяся в результате акта зарождения цепи, входит в цикл реакций продолжения цепи – звено цепи. При этом она реализует превращение молекул реагента в молекулы продукта и выходит из этого цикла в виде частицы, неотличимой от вошедшей в него. Далее она либо участвует в следующем звене, либо выходит из цикла путём рекомбинации. Вероятность рекомбинации одинакова на любом его звене, т.е. она постоянна. Таким образом, процессы обрыва цепи – это процессы стохастические и могут быть охарактеризованы постоянным параметром – вероятностью обрыва цепи β. Но поскольку на каждой стадии происходит либо обрыв цепи, либо продолжение, то очевидно, что вероятность продолжения цепи α=1-β.
Исходя из этого, средняя длина цепи может быть вычислена:
где rr – скорость роста цепи.
rf – скорость обрывацепи.
Для цепных реакций ν сильно зависит от концентрации и чистоты реагентов, интенсивности света, температуры, материала ректора и его размеров.
Условием стационарности в неразветвлённых цепных реакциях является равенство скоростей инициирования и обрыва цепей:
Скорость реакции будет выражаться:
Для скорости изменения концентрации активных центров можно записать уравнение (при линейном обрыве цепи, т.е. при низких давлениях):
где g – удельная скорость обрыва цепи.
При n=0, t=0 и r0=const, g=const получаем:
Зависимость скорости реакции от времени примет вид:
где l – удельная скорость реакции продолжения цепи.
где D – коэффициент диффузии,
d – диаметр реактора,
Если обрыв цепи обусловлен диффузией, то
В кинетической области:
Разветвлённые цепные реакции.
Цепные реакции, включающие стадии зарождения, разветвления и обрыва цепи называются разветвлёнными. Это процессы окисления белого фосфора и фосфина, водорода и оксида углерода ( IV ).
Теория этих реакций разработана Н.Н. Семёновым и Хиншелвудом. Было показано, что при описании развития этих реакций система кинетических уравнений для активных центров может быть сведена к уравнению для активных центров одного вида.
В дифференциальном уравнении появляется член, учитывающий скорость образования активных центров.
где
После интегрирования получаем:
где gn – скорость гибели активных центров.
fn – скорость образования активных центров.
По аналогии с неразветвлёнными цепными реакциями можно получить выражение для скорости:
где l – удельная скорость реакции продолжения цепи.
Анализ этих уравнений показывает:
1.
б)
т.е. с течением времени устанавливается стационарный режим.
2. т.е.
и
т.е. по истечению некоторого времени, если скорость образования активных центров превышает скорость их гибели, скорость процесса экспоненциально возрастает и по завершению периода индукции заканчивается взрывом даже при постоянной температуре. В этом случае воспламенение обусловлено спонтанным ростом скорости реакции из-за быстрого размножения активных центров.
Тогда выражение для скорости после раскрытия неопределённости по правилу Лопиталя примет вид:
т.е. реакция протекает без воспламенения, часто с чрезвычайно малой скоростью.
для конкретных реакций можно получить, как было показано Н.Н, Семёновым, методом частично стационарных концентраций. Метод стационарных концентраций для цепных реакций неприменим, поскольку концентрация одного из активных центров существенно возрастает в ходе процесса. Так, при окислении водорода в соответствии с общепринятым механизмом можно считать:
т.е. при определении скорости убыли атомарного водорода необходимо решить полное дифференциальное уравнение.
Анализ кинетических уравнений позволяет объяснить удивительные явления при окислении фосфора и водорода. Было обнаружено экспериментально, что при окислении воспламенение наблюдается только при определённых давлениях. Это можно показать графически.
В области с координатами точки А реакционная смесь не воспламеняется. Чтобы смесь воспламенилась, можно не только увеличить температуру до Т1, но и уменьшить давление до р1, т.е. для этих реакций наблюдается явление увеличения скорости реакции при уменьшении числа частиц в единице объёма, что противоречит закону действующих масс.
Эта закономерность объясняется следующим образом. При малых давлениях увеличивается длина свободного частиц и увеличивается вероятность обрыва цепи на стенках реактора, т.е. реакция переходит в стационарный режим:
При давлениях в области воспламенения разветвление преобладает над обрывом, т.е.
и скорость процесса становится экспоненциальной. При дальнейшем увеличении давления возрастает вероятность квадратичного обрыва цепей, и система вновь переходит на стационарный режим.
Примером разветвлённой цепной реакции является реакция деления урана:
В результате реакции выделяется энергия и в форме теплоты передаётся в окружающую среду, но в каждом акте деления урана образуется в среднем 2,5 нейтрона, которые «размножаются» в геометрической прогрессии и приводят к лавинообразному возрастанию числа делящихся атомов и к взрыву.
Однако эксперимент показывает, что увеличение скорости зарождения цепей приводит к значительному расширению области воспламенения гремучей смеси и к ускорению разветвления. В этом случае считают, что наблюдается положительное взаимодействие цепей.
Для скорости изменения концентраций с положительным взаимодействием цепей дифференциальное уравнение имеет вид:
где cn 2 – скорость квадратичного разветвления цепей.
Принципиально от разветвлённых цепных реакций отличаются реакции с вырожденным разветвлением. Для них не наблюдается перехода в режим самовоспламенения и взрыва.
Рассмотрим окисление углеводородов. При низкотемпературном окислении на одной из стадий продолжения цепи образуется гидропероксид:
может стать источником свободных радикалов:
что приводит к возникновению новых цепей.
Когда степень превращения реагентов невелика и можно пренебречь убылью промежуточных продуктов, то кинетику этих реакций можно описать системой:
р – концентрация промежуточного продукта.
l – удельная скорость продолжения цепи.
Второе уравнение после интегрирования с граничным условием
при
даёт следующее выражение:
Если рассматривать квадратичный обрыв цепей, то система дифференциальных уравнений имеет вид:
В этом случае автоускорение выражено менее резко, чем для линейного обрыва цепей.