Что называют целыми выражениями в алгебре
Алгебра. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
Алгебраическое выражение, в котором несколько многочленов соединены знаками сложения, вычитания и умножения, называется целым выражением.
Сумма многочленов равна многочлену, членами которого являются все члены этих многочленов.
Разность двух многочленов – это сумма уменьшаемого и многочлена, противоположного вычитаемому.
Произведение одночлена и многочлена равно многочлену, членами которого являются произведения этого одночлена и каждого члена многочлена.
Правило приведения многочлена к стандартному виду:
1)каждый член многочлена привести к стандартному виду;
2)привести подобные члены.
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Перед нами несколько выражений, можно ли из них составить общее выражение, соединяя их знаками сложения, вычитания и умножения?
Безусловно. Данные действия мы научились выполнять на предыдущих занятиях.
Одно из выражений, которое может быть получено: (17 + с)(16а – 15х) – (3 + 4ас) + (х + у)
Мы узнаем, как называется полученное выражение, и научимся упрощать подобные выражения.
Начнём с определения.
Алгебраическое выражение, в котором несколько многочленов соединены знаками сложения, вычитания и умножения, называется целым выражением.
Например, полученное при выполнении задания выражение является целым, т.к. многочлены соединены знаками сложения, вычитания и умножения:
(17 + с)(16а – 15х) – (3 + 4ас) + (х + у) – целое выражение.
Выражение, которое содержит многочлены, соединённые знаком деления, не будет являться целым.
Например, выражение (7 + 14а) + (23 – с) : (х + у) – не является целым.
8х + 12 – целое выражение.
Целые выражения можно упрощать, используя правила сложения, вычитания и умножения многочленов.
Во-первых, произведение многочленов равно многочлену, членами которого являются произведения каждого члена одного многочлена и каждого члена другого многочлена Т.е. чтобы найти произведение многочленов, необходимо каждый член одного многочлена умножить на каждый член другого многочлена, а полученные одночлены сложить.
Например, так выполняется умножение многочленов.
(а + с)(х + у) = ах + ау + сх +су
Во-вторых, сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
Например, так находится сумма многочленов:
(а + с) + (к + х) = а + с + к + х
И, наконец, разность двух многочленов равна многочлену, членами которого являются все члены уменьшаемого и, взятые с противоположными знаками, все члены вычитаемого.
Например, так находится разность двух многочленов.
(а + с) – (к + х) = а + с – к – х
Выражение, полученное в результате выполнения этих действий, нужно приводить к стандартному виду.
Любое целое выражение можно преобразовать в многочлен стандартного вида.
Рассмотрим, как упрощать целое выражение.
Упростите выражение: (17 + с)(16а – 15х) – (3 + 4ас) + (х + у).
Сначала выполним умножение двух первых многочленов, затем раскроем скобки у оставшихся многочленов. Т.к. перед третьей скобкой стоит знак минус, то знаки членов данного многочлена поменяются на противоположные.
(17 + с)(16а – 15х) – (3 + 4ас) + (х + у) = 17 · 16а + 17·(-15)х + 16ас +(-15)сх – 3 – 4ас + х+ у =
Далее приведём полученный многочлен к стандартному виду
= 272а – 255х + 16ас – 15сх – 3 – 4ас + х + у = 272а – 254х + 12ас –15сх + у –3
Итак, сегодня мы получили представление о том, что такое целое выражение, научились его упрощать.
Рассмотрим дополнительно, как доказать, что целое выражение является нулевым многочленом.
Докажите, что целое выражение является нулевым многочленом.
(2х + у)(2х – у) – ( к + 2х)(к – 2х) + (к 2 + у 2 – 8х 2 )
Для доказательства этого утверждения упростим выражение.
Для этого раскроем скобки и приведем к стандартному виду полученное выражение.
Полученный многочлен является нулевым, что и требовалось доказать.
Разбор заданий тренировочного модуля.
Составьте целое выражение по тексту задачи.
Найдите площадь прямоугольника со сторонами (а + с) и (к + х).
Для решения задачи, нужно вспомнить, что площадь прямоугольника находят как произведение двух его смежных сторон. Исходя из условия задачи, площадь находим как (а + с)(к + х). Это и есть искомый ответ.
2. Упростите целое выражение и найдите его степень: 3 · (х + 3)(х – 6) – 5х 2
Вначале упростим целое выражение, используя свойства умножения многочлена на многочлен и одночлена на многочлен. Далее приведём полученный многочлен к стандартному виду, а затем найдём степень полученного многочлена.
Алгебра. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
Алгебраическое выражение, в котором несколько многочленов соединены знаками сложения, вычитания и умножения, называется целым выражением.
Сумма многочленов равна многочлену, членами которого являются все члены этих многочленов.
Разность двух многочленов – это сумма уменьшаемого и многочлена, противоположного вычитаемому.
Произведение одночлена и многочлена равно многочлену, членами которого являются произведения этого одночлена и каждого члена многочлена.
Правило приведения многочлена к стандартному виду:
1)каждый член многочлена привести к стандартному виду;
2)привести подобные члены.
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Перед нами несколько выражений, можно ли из них составить общее выражение, соединяя их знаками сложения, вычитания и умножения?
Безусловно. Данные действия мы научились выполнять на предыдущих занятиях.
Одно из выражений, которое может быть получено: (17 + с)(16а – 15х) – (3 + 4ас) + (х + у)
Мы узнаем, как называется полученное выражение, и научимся упрощать подобные выражения.
Начнём с определения.
Алгебраическое выражение, в котором несколько многочленов соединены знаками сложения, вычитания и умножения, называется целым выражением.
Например, полученное при выполнении задания выражение является целым, т.к. многочлены соединены знаками сложения, вычитания и умножения:
(17 + с)(16а – 15х) – (3 + 4ас) + (х + у) – целое выражение.
Выражение, которое содержит многочлены, соединённые знаком деления, не будет являться целым.
Например, выражение (7 + 14а) + (23 – с) : (х + у) – не является целым.
8х + 12 – целое выражение.
Целые выражения можно упрощать, используя правила сложения, вычитания и умножения многочленов.
Во-первых, произведение многочленов равно многочлену, членами которого являются произведения каждого члена одного многочлена и каждого члена другого многочлена Т.е. чтобы найти произведение многочленов, необходимо каждый член одного многочлена умножить на каждый член другого многочлена, а полученные одночлены сложить.
Например, так выполняется умножение многочленов.
(а + с)(х + у) = ах + ау + сх +су
Во-вторых, сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
Например, так находится сумма многочленов:
(а + с) + (к + х) = а + с + к + х
И, наконец, разность двух многочленов равна многочлену, членами которого являются все члены уменьшаемого и, взятые с противоположными знаками, все члены вычитаемого.
Например, так находится разность двух многочленов.
(а + с) – (к + х) = а + с – к – х
Выражение, полученное в результате выполнения этих действий, нужно приводить к стандартному виду.
Любое целое выражение можно преобразовать в многочлен стандартного вида.
Рассмотрим, как упрощать целое выражение.
Упростите выражение: (17 + с)(16а – 15х) – (3 + 4ас) + (х + у).
Сначала выполним умножение двух первых многочленов, затем раскроем скобки у оставшихся многочленов. Т.к. перед третьей скобкой стоит знак минус, то знаки членов данного многочлена поменяются на противоположные.
(17 + с)(16а – 15х) – (3 + 4ас) + (х + у) = 17 · 16а + 17·(-15)х + 16ас +(-15)сх – 3 – 4ас + х+ у =
Далее приведём полученный многочлен к стандартному виду
= 272а – 255х + 16ас – 15сх – 3 – 4ас + х + у = 272а – 254х + 12ас –15сх + у –3
Итак, сегодня мы получили представление о том, что такое целое выражение, научились его упрощать.
Рассмотрим дополнительно, как доказать, что целое выражение является нулевым многочленом.
Докажите, что целое выражение является нулевым многочленом.
(2х + у)(2х – у) – ( к + 2х)(к – 2х) + (к 2 + у 2 – 8х 2 )
Для доказательства этого утверждения упростим выражение.
Для этого раскроем скобки и приведем к стандартному виду полученное выражение.
Полученный многочлен является нулевым, что и требовалось доказать.
Разбор заданий тренировочного модуля.
Составьте целое выражение по тексту задачи.
Найдите площадь прямоугольника со сторонами (а + с) и (к + х).
Для решения задачи, нужно вспомнить, что площадь прямоугольника находят как произведение двух его смежных сторон. Исходя из условия задачи, площадь находим как (а + с)(к + х). Это и есть искомый ответ.
2. Упростите целое выражение и найдите его степень: 3 · (х + 3)(х – 6) – 5х 2
Вначале упростим целое выражение, используя свойства умножения многочлена на многочлен и одночлена на многочлен. Далее приведём полученный многочлен к стандартному виду, а затем найдём степень полученного многочлена.
Основные виды выражений в алгебре
На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.
Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.
Навигация по странице.
Одночлены и многочлены
Начнем с выражений, имеющих название одночлены и многочлены. На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.
Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.
Многочлены – это сумма одночленов.
К одночленам и многочленам относится ряд сопутствующих понятий. К примеру, для одночленов и многочленов характерно понятие их степени, также даются определения одночленов и многочленов стандартного вида. При описании одночленов также пользуются понятием коэффициента, а при описании многочленов используют такие термины, как члены многочлена, которые, в частности, бывают подобными, свободный член многочлена и старший коэффициент. Соответствующие определения вместе с примерами Вы найдете в статье одночлен и его стандартный вид, степень и коэффициент одночлена, а также в статье многочлены – основные определения и примеры.
Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень, в том смысле, что в результате их выполнения получается одночлен.
На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами.
Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен, а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители.
Рациональные (алгебраические) дроби
В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби, которые некоторые авторы называют алгебраическими дробями.
Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.
Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.
На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями.
Часто приходится выполнять и преобразование алгебраических дробей, наиболее распространенными из них являются сокращение и приведение к новому знаменателю.
Рациональные выражения
В школе до изучения иррациональных чисел работа ведется исключительно с рациональными выражениями. Дадим определение рационального выражения.
Числовые и буквенные выражения, в которых используются рациональные числа и буквы, а также операции сложения, вычитания, умножения, деления (деление может быть обозначено дробной чертой) и возведения в целую степень, называются рациональными выражениями.
Важное пояснение: в рациональных выражениях не могут присутствовать знаки и функции, которые могут внести иррациональность. Иными словами, в рациональных выражениях не должно быть знаков радикала (корней), степеней с дробными и иррациональными показателями, степеней с переменными в показателе, логарифмов, тригонометрических функций и т.п.
Теперь можно привести примеры рациональных выражений. Отталкиваясь от данного выше определения, можно утверждать, что числовые выражения и являются рациональными выражениями. Рациональным является и буквенное выражение , а также выражения с переменными вида a·x 2 +b·x+c и .
Рациональные выражения подразделяются на целые рациональные выражения и дробные рациональные выражения.
Целые рациональные выражения
Целыми рациональными выражениями называются рациональные выражения, которые не содержат деления на выражения с переменными и выражений с переменными в отрицательной степени.
А выражения x:(y−1) и не являются целыми рациональными, так как содержат деление на выражение с переменными.
Дробные рациональные выражения
Если рациональное выражение содержит деление на выражение с переменными и/или выражение с переменными в отрицательной степени, то оно называется дробным рациональным выражением.
А вот рациональные выражения (2·x−x 2 ):4 и не содержат деления на выражения с переменными и отрицательных степеней выражений с переменными, поэтому они не являются дробными рациональными выражениями.
Выражения со степенями
Название данного вида выражений говорит само за себя. Выражения со степенями (их еще называют степенные выражения) появляются во время изучения степеней.
Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.
Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями.
Иррациональные выражения, выражения с корнями
Знакомство с понятием корня приводит к возникновению выражений, в записях которых присутствуют знаки корней (радикалы). Такие выражения обычно называют выражениями с корнями или выражениями, содержащими операцию извлечения корня. Их же называют иррациональными выражениями.
Так как корни тесно связаны со степенями, то они очень часто присутствуют в выражениях совместно. Например, и т.п.
В статье преобразование иррациональных выражений (выражений с корнями) мы поговорим про основные приемы работы с иррациональными выражениями.
Тригонометрические выражения
Тригонометрическими выражениями обычно называют выражения, содержащие sin, cos, tg и ctg, а также обратные тригонометрические функции arcsin, arccos, arctg и arcctg.
Приведем примеры тригонометрических выражений: , .
При работе с тригонометрическими функциями обычно используются свойства синуса, косинуса, тангенса, котангенса, основные формулы тригонометрии, свойства arcsin, arccos, arctg и arcctg и формулы с arcsin, arccos, arctg и arcctg. Подробнее об основных принципах обращения с тригонометрическими выражениями мы расскажем в статье преобразование тригонометрических выражений.
Логарифмические выражения
Логарифмические выражения возникают после знакомства с логарифмами.
Выражения, содержащие логарифмы называют логарифмическими выражениями.
Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .
В продолжение темы обращайтесь к материалу преобразование логарифмических выражений.
Дроби
Дробь расширяет понятие обыкновенной дроби. Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.
Итак, дадим определение дроби.
Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.
Данное определение позволяет привести примеры дробей.
Выражения общего вида
В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида, а при описании говорят просто выражение, не добавляя дополнительных уточнений.
Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.
Понятие и виды алгебраических выражений
п.1. Математические символы и выражения
В математическом языке мы используем особенные «слова», которые называются математическими выражениями, при этом «буквами» нам служат математические символы.
Список математических символов постоянно пополняется. Ведь при написании своей работы каждый вправе изобрести собственный иероглиф-символ, объяснить его смысл с помощью определения и предложить правила применения. Если символ окажется удачным и востребованным, то со временем он появится в других работах и начнёт самостоятельный путь по миру.
Допустим, по правилам, мы строим математические выражения, которые состоят из различных чисел (образованных цифрами, дробной чертой и десятичной запятой), знаков арифметических операций, возведения в рациональную степень, корней и скобок:
п.2. Определение и понятие переменной
Математические выражения с переменными также могут быть термами или формулами.
Если алгебраическое выражение не содержит деления на переменные и извлечения корня из переменных (или возведения переменных в степень с дробным показателем), то его называют целым выражением.
Примеры целых выражений:
Если алгебраическое выражение, кроме признаков целого выражения, содержит также деление на переменные, то его называют дробным выражением.
Примеры дробных выражений:
Целые и дробные выражения объединяют в класс рациональных выражений.
Если алгебраическое выражение содержит извлечение корня из переменных (или возведение переменных в степень с дробным показателем), то его называют иррациональным выражением.
Примеры иррациональных выражений:
п.4. Примеры
Значения выражений слева и справа действительно равны, формула истинна.
Ответ: формула истинна
Подставляем значения переменных:
Пример 4. Для проведения экзамена закупили k пачек бумаги по p рублей и m картриджей для принтера по q рублей. Напишите формулу, по которой можно найти общую сумму расходов S.
Значения выражений слева и справа действительно равны, формула истинна.
Основные виды выражений в алгебре
Уроки алгебры знакомят нас с различными видами выражений. По мере поступления нового материала выражения усложняются. При знакомстве со степенями они постепенно добавляются в выражение, усложняя его. Также происходит с дробями и другими выражениями.
Чтобы изучение материала было максимально удобным, это производится по определенным названиям для того, чтобы можно было их выделить. Данная статья даст полный обзор всех основных школьных алгебраических выражений.
Одночлены и многочлены
Выражения одночлены и многочлены изучаются в школьной программе, начиная с 7 класса. В учебники были даны определения такого вида.
Одночлены – это числа, переменные, их степени с натуральным показателем, любые произведения, сделанные с их помощью.
Многочленами называют сумму одночленов.
Чтобы отличать одночлен от многочлена, обращают внимание на степени и их определения. Немаловажно понятие коэффициента. При приведении подобных слагаемых их разделяют на свободный член многочлена или старший коэффициент.
Над одночленами и многочленами чаще всего выполняются какие-то действия, после которых выражение приводится к вижу одночлена. Выполняется сложение, вычитание, умножение и деление, опираясь на алгоритм для выполнения действий с многочленами.
Когда имеется одна переменная, не исключено деление многочлена на многочлен, которые представляются в виде произведения. Такое действие получило название разложение многочлена на множители.
Рациональные (алгебраические) дроби
Понятие рациональные дроби изучаются в 8 классе средней школы. Некоторые авторы называют их алгебраическими дробями.
Рациональной алгебраической дробью называют дробь, в которой на месте числителя и знаменателя выступают многочлены или одночлены, числа.
Алгебраические дроби можно складывать, вычитать, умножать, делить, возводить в степень. Подробнее это рассматривается в разделе действий с алгебраическими дробями. Если необходимо преобразовать дробь, нередко пользуются свойством сокращения и приведения к общему знаменателю.
Рациональные выражения
В школьном курсе изучается понятие иррациональных дробей, так как необходима работа с рациональными выражениями.
Рациональные выражения считаются числовыми и буквенными выражениями, где используются рациональные числа и буквы со сложением, вычитанием, умножением, делением, возведением в целую степень.
Рациональные выражения могут не иметь знаков, принадлежащих функции, которые приводят к иррациональности. Рациональные выражения не содержат корней, степеней с дробными иррациональными показателями, степеней с переменными в показателе, логарифмических выражений, тригонометрических функций и так далее.
Все рациональные выражения подразделяют на целые и дробные.
Целые рациональные выражения
Целые рациональные выражения – это такие выражения, не содержащие деления на выражения с переменными отрицательной степени.
Дробные рациональные выражения
Дробное рациональное выражение – это выражение, которое содержит деление на выражение с переменными отрицательной степени.
Выражения со степенями
Выражения, которые содержат степени в любой части записи, называют выражениями со степенями или степенными выражениями.
Иррациональные выражения, выражения с корнями
Корень, имеющий место быть в выражении, дает ему иное название. Их называют иррациональными.
Иррациональными выражениями называют выражения, которые имеют в записи знаки корней.
Тригонометрические выражения
Для работы с такими функциями необходимо пользоваться свойствами, основными формулами прямых и обратных функций. Статья преобразование тригонометрических функций раскроет этот вопрос подробней.
Логарифмические выражения
После знакомства с логарифмами можно говорить о сложных логарифмических выражениях.
Выражения, которые имеют логарифмы, называют логарифмическими.
Для углубления изучения материала, следует обратиться к материалу о преобразовании логарифмических выражений.
Дроби
Существуют выражения особого вида, которые получили название дроби. Так как они имеют числитель и знаменатель, то они могут содержать не просто числовые значения, а также выражения любого типа. Рассмотрим определение дроби.
Дробью называют такое выражение, имеющее числитель и знаменатель, в которых имеются как числовые, так и буквенные обозначения или выражения.
Выражение общего вида
Их вид говорит о том, что можно отнести к любому из вышеперечисленных видов. Чаще всего их не относят ни к какому, так как они имеют специфичное комбинированное решение. Их рассматривают как выражения общего вида, причем для описания не используются дополнительные уточнения или выражения.
При решении такого алгебраического выражения всегда необходимо обращать внимание на его запись, наличие дроби, степеней или дополнительных выражений. Это нужно для того, чтобы точно определиться со способом его решения. Если нет уверенности в его названии, то рекомендуется называть его выражением общего типа и решать, согласно выше написанному алгоритму.