Появилась возможность изготовления пружин из проволоки квадратного и прямоугольного сечения; конических и бочкообразных пружин
В 2015-2018 году планируются дальнейшее развитие основного производства: -Строительство дополнительных площадей для основного производства. -Приобретение, с целью обновления, нового высокопроизводительного навивочного оборудования.
Качество и технологии
Понятие о структуре металлов
Металлы и сплавы в твердом состоянии имеют критическое строение, т. е. их атомы расположены в пространстве с геометрической правильностью и образуют элементарную ячейку — кристаллическую решетку. Для разных металлов форма кристаллической решетки различна. Расстояния м
ежду соседними атомами в кристаллической решетке называются параметрами решетки. Эти расстояния очень малы и измеряются в ангстремах (1 А = 10-8 см.). Атомы совершают непрерывные колебательные движения. Чем выше температура металла, тем больше амплитуда колебаний атома. Множество кристаллических решеток образует кристалл.
При кристаллизации металлов правильных кристаллов обычно не получается. Кристаллы с искаженной формой называются кристаллитами. Слиток состоит из кристаллитов различной формы.
Кристаллическое строение металла называют его структурой. Свойства металлов и сплавов определяются не только их химическим составом, но и внутренним строением. В результате различных процессов обработки можно изменять внутреннее строение металла и, как следствие, его свойства.
Макроструктурой называется строение металла, видимое невооруженным глазом или при увеличении не более 10-кратного. Микроструктурой называется строение металла, видимое при больших увеличениях.
В результате исследования макроструктуры можно выявить величину и форму усадочной раковины, трещины, макропоры, газовые пузыри, неметаллические включения и строение отдельных кристаллических зон в слитке. В деформированном металле можно обнаружить трещины, волосовины, флокены — нитевидные трещины, получающиеся вследствие большого давления водорода при остывании стали, а также расположение волокон в прокате и поковках.
После термической и химико-термической обработки по макроструктуре судят о глубине закалки, цементации, обезуглероженной зоне и т. д.
Волокнистая структура стали получается в результате обработки давлением вследствие вытягивания кристаллитов и неметаллических включений в направлении деформации. Вдоль волокон механические свойства металла выше, чем поперек. Это учитывают при конструировании и изготовлении деталей. Чем чище металл, т. е. чем меньше в нем неметаллических включений, тем меньше разница в механических свойствах металла относительно направления деформации. При горячей обработке давлением литая структура слитка разрушается, дробится на более мелкие части. Имеющиеся в слитке пористость, макро- и микротрещины, а также газовые пузыри заваривают. Однако нередко на сердцевине деформированных изделий все же наблюдается некоторая пористость и рыхлость, частично остающиеся от слитка. Горячая обработка давлением повышает свойства пластичности стали относительные удлинение и сужение вдоль волокон, и понижает их в поперечном направлении.
При холодной обработке давлением, например при волочении, возрастают твердость и прочность и уменьшается пластичность стали.
Исследование макроструктуры металла не дает полного представления о его строении. Поэтому при исследовании стали обращают внимание на характер микроструктуры стали, на ее составляющие части и на ветчину зерна. В сталях различают действительное и природное зерно. Действительное зерно стали — это размер зерна, полученный в результате той или иной обработки — термической или давлением. На величину зерна оказывают влияние температура и время выдержки в нагретом состоянии.
Природное зерно является наследственным. При определенных температурах сталь может иметь крупное или мелкое природное зерно. Легирующие элементы — ванадий, титан, вольфрам, молибден — способствуют повышению величины зерна стали. Наследственное природное зерно зависит от способа выплавки и раскисления стали и оказывает большое влияние на свойства стали и ее обрабатываемость.
Главной причиной плохого качества пружин является низкое качество исходной заготовки. Для предупреждения получения брака пружин необходим тщательный контроль каждой партии проката с целью обнаружения внешних дефектов. Химический состав, структура, металла и технологические свойства стали должны отмечать техническим требованиям, предъявляемым к сталям, идущим на изготовление пружин.
По вопросам размещения заказов на изготовление пружин обращаться:
Смотреть что такое «Структура (строение металла)» в других словарях:
Структура металла — – строение металла, сплава. Основные методы изучения структуры металла – световая и электронная микроскопия, рентгеноструктурный анализ, а также изучение изломов и микрошлифов невооружённым глазом и с помощью лупы. [Новый… … Энциклопедия терминов, определений и пояснений строительных материалов
Структура — [structure] собирательное название характеристик макро и микростроения вещества. В металловедении под структурой понимают особенности строения металлов и сплавов, характеризующих природу (состав), морфологию и расположение разных фаз, а также их… … Энциклопедический словарь по металлургии
Структура — I Структура (лат. structura строение, расположение) определённая взаимосвязь, взаиморасположение составных частей; строение, устройство чего либо. II Структура совокупность устойчивых связей объекта, обеспечивающих его целостность … Большая советская энциклопедия
СТРУКТУРА — (1) определённое сочетание составных частей целого; строение, устройство чего либо; особенности машин, устройств, материалов, определяемые в первую очередь типом элементов, из которых они состоят, их количеством и порядком соединения между собой; … Большая политехническая энциклопедия
структура — ы, ж. structure f., нем. Structure <, лат. structura. Взаимное расположение и связь составных элементов чего л.; строение чего л. Структура металла. Зернистая структура почвы. БАС 1. Структура храма сего от внешния страны, сиречь архитектуры,… … Исторический словарь галлицизмов русского языка
СТРУКТУРА — СТРУКТУРА, структуры, жен. (лат. structura). То же, что строение в 3 знач. Структура металла. Структура гранита. Структура административного управления. Организационная структура. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
структура — ы, ж. 1) (чего или какая) Строение вещества, обусловленное способами сочетания, связями зерен, атомов и т. п. Структура почвы. Структура металла. Древесная структура. Кристаллическая структура. Известняк, например, и мрамор имеют одинаковый… … Популярный словарь русского языка
структура — ы; ж. [лат. structura] 1. чего. Взаиморасположение и связь частей, составляющих что л. целое; устройство, строение чего л. С. металла. С. почвы. С. языка. Различная с. сходных явлений. Исследовать структуру вещества. Нарушения в структуре чего л … Энциклопедический словарь
структура — ы; ж. (лат. structura) см. тж. структурный 1) чего Взаиморасположение и связь частей, составляющих что л. целое; устройство, строение чего л. Структу/ра металла. Структу/ра почвы. Структу/ра языка … Словарь многих выражений
АТОМА СТРОЕНИЕ — раздел физики, изучающий внутреннее устройство атомов. Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся… … Энциклопедия Кольера
Смотреть что такое «СТРУКТУРА МЕТАЛЛА» в других словарях:
Структура металла — – строение металла, сплава. Основные методы изучения структуры металла – световая и электронная микроскопия, рентгеноструктурный анализ, а также изучение изломов и микрошлифов невооружённым глазом и с помощью лупы. [Новый… … Энциклопедия терминов, определений и пояснений строительных материалов
структура металла — metalo struktūra statusas T sritis chemija apibrėžtis Metalo mikrostruktūros, makrostruktūros, postruktūrio ir kristalinės gardelės struktūros bendras pavadinimas. atitikmenys: angl. metal structure rus. структура металла … Chemijos terminų aiškinamasis žodynas
структура металла — metalo sandara statusas T sritis fizika atitikmenys: angl. metal structure vok. Metallgefüge, n; Metallstruktur, f rus. структура металла, f pranc. structure du métal, f … Fizikos terminų žodynas
СТРУКТУРА МЕТАЛЛА — собирательное название характеристик макроструктуры, микроструктуры, субструктуры и строения кристаллической решетки. Основные методы изучения структуры металла световая и электронная микроскопия, рентгеноструктурный анализ, а также изучение… … Металлургический словарь
аустенитная структура (металла) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN austenitic structure … Справочник технического переводчика
Структура (строение металла) — Структура металла, строение металла (сплава). С. можно наблюдать невооруженным глазом или при небольших увеличениях (см. Макроструктура), чтобы установить присутствие и распределение по объёму изделия раковин, пор, неметаллических включений и т.п … Большая советская энциклопедия
структура — ы, ж. structure f., нем. Structure <, лат. structura. Взаимное расположение и связь составных элементов чего л.; строение чего л. Структура металла. Зернистая структура почвы. БАС 1. Структура храма сего от внешния страны, сиречь архитектуры,… … Исторический словарь галлицизмов русского языка
СТРУКТУРА — СТРУКТУРА, структуры, жен. (лат. structura). То же, что строение в 3 знач. Структура металла. Структура гранита. Структура административного управления. Организационная структура. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
структура — ы, ж. 1) (чего или какая) Строение вещества, обусловленное способами сочетания, связями зерен, атомов и т. п. Структура почвы. Структура металла. Древесная структура. Кристаллическая структура. Известняк, например, и мрамор имеют одинаковый… … Популярный словарь русского языка
СТРУКТУРА — (1) определённое сочетание составных частей целого; строение, устройство чего либо; особенности машин, устройств, материалов, определяемые в первую очередь типом элементов, из которых они состоят, их количеством и порядком соединения между собой; … Большая политехническая энциклопедия
О структуре (строении) металлов можно получить представление прежде всего по виду излома, наблюдаемого невооруженным глазом; структура, наблюдаемая невооруженным глазом или с увеличением не больше чем в 10 раз, называется макроструктурой.
Более подробно можно рассмотреть структуру металла в микроскоп. Начало применения микроскопа при изучении строения металлов было положено в 1831 г. инженером одного из уральских заводов П. П. Аносовым. Так как металлы непрозрачны, то под микроскопом их можно рассматривать только в отраженном свете. Для получения ясного изображения рассматриваемой под микроскопом поверхности необходимо, чтобы все точки ее находились на равном расстоянии от объектива, поэтому поверхности рассматриваемых под микроскопом металлов подвергают шлифованию. Однако рассматривая такой шлиф под микроскопом, трудно заметить подробности его структуры. Подвергая шлиф воздействию разъедающих жидкостей, действующих различно на цельную поверхность зерна и на поверхности соприкосновения зерен (границы зерен), мы получим в результате такой обработки (травления) под микроскопом отчетливую картину слегка рельефной поверхности. Если травлению подвергнуть шлиф сплава, то картина делается еще более сложной, так как обычно на различные структурные составляющие сплава травитель действует не только в разной степени, но и придает им различную окраску. Строение металла, наблюдаемое под микроскопом, называется микроструктурой.
Наблюдая микроструктуру различных металлов, можно убедиться, что все они имеют зернистое строение. Величина и форма зерен зависят от природы металла, условий кристаллизации слитка и его последующей обработки (пластической и термической).
При рассмотрении травленой поверхности шлифа под микроскопом обнаруживается характерный для каждого металла рисунок, представляющий собой сечение границ зерен металла рассматриваемой поверхностью. На фиг. 37 представлена фотография травленой поверхности литой меди, на которой ясно видна сетка тонких линий, соответствующих сечению границ зерен плоскостью шлифа. Произвольность очертаний сетки указывает на произвольность
очертании тел, сечение которых представляет сетка; эти тела называются кристаллитами (или кристаллическими зернами) — зернами, образованными при затвердевании металла растущими навстречу друг другу кристаллами.
Процесс образования кристаллитов представлен схематически на фиг. 38; фиг. 38, а соответствует началу затвердевания металла, когда в расплавленном металле начинают возникать зародыши кристаллизации — атомные группы правильной геометрической формы; фиг. 38, б, в, г, д показывает последовательное увеличение кристаллов, растущих навстречу друг другу (наряду с этим ростом в незатвердевшем объеме возникают новые зародыши). На фиг. 38, е даны кристаллиты или кристаллические зерна неправильной внешней формы, образовавшиеся из правильных первичных группировок атомов. Эти кристаллические зерна и наблюдаются под микроскопом.
В современных оптических металлоникроскопах увеличение достигает при
близительно 2000 раз. Микроскоп позволяет видеть отдельные зерна металла даже тогда, когда их нельзя различить в изломе. Однако наблюдение структуры металла под микроскопом не дает полного доказательства кристаллического строения металлов. Наблюдаемые под микроскопом кристаллические зерна редко имеют плоскогранную форму, характерную для кристаллов. Кристаллическое строение металлов было доказано лишь с началом применения в исследовании структуры металла рентгеновских лучей.
Кристаллическое строение вещества характеризуется тем, что атомы вещества занимают определенные положения в пространстве в узлах так называемой пространственной решетки (фиг. 39). Эта пространственная решетка у разных веществ может иметь различный вид. Для характеристики типа пространственной решетки полезно ввести понятие об элементарной ячейке, т. е. элементарной части пространственной решетки, простым повторением которой и образована пространственная решетка. Различные кристаллические системы отличаются формой элементарной ячейки. Элементарная ячейка в общем случае представляет собой косоугольный параллелепипед (фиг. 40, а) с ребрами а, b и с и углами а, b и y между этими ребрами. Различные соотношения этих величин дают несколько основных кристаллических систем.
Наиболее часто встречается в металлах кубическая система (а = b = с; а = b = у = 90°; элементарная ячейка — на фиг. 40, б). Чаще всего наблюдаются два вида кубической решетки — объемноцентрированная и гранецентрированная. Эти решетки отличаются от простой кубической тем, что, кроме атомов, расположенных по вершинам углов куба, в первой из них есть еще атом в центре куба (фиг. 40, в), во второй атомы рапложены в вершинах и в центре граней куба (фиг. 40, г).
Для вычисления расстояний между атомными плоскостями пользуются уравнением Вульфа 1 — Брэгга:
где d — искомое расстояние между атомными плоскостями;
0 — угол скольжения луча по отношению к отражающей атомной плоскости, определяемый положением темного пятна на негативе (рентгенограмме);
л — длина волны рентгеновского луча; n — целое число.
Это уравнение показывает, что пятна на рентгенограмме возникают лишь от определенных групп атомных плоскостей, а именно тех, которые расположены по отношению к направлению рентгеновских лучей так, что лучи, отраженные от каждой из плоскостей данной группы, будут иметь разность хода
(d sin 0), равную целому числу п полуволн Только при этом условии
интенсивность лучей, отраженных от каждой из плоскостей данной группы, будет суммироваться и давать пятно (или интерференционный максимум) на фотографической пленке — рентгенограмме.
Существует несколько методов рентгеновского анализа структуры кристаллов,
В металловедческих исследованиях наиболее распространен следующий метод. На образец (тонкий столбик, иногда плоский шлиф) направляют пучок рентгеновских лучей с определенной длиной волны; при весьма большом числе кристалликов и различной их ориентировке в пространстве среди них найдутся такие, которые смогут отразить пучок лучей от разных атомных плоскостей. Отраженные от каждой группы одинаковых плоскостей различных кристалликов лучи будут давать пятна с определенным углом с первоначальным направлением луча и образуют конусы, изображенные на фиг. 41.
При большом числе различно расположенных кристалликов рентгеновские лучи, прошедшие через металл, на фотопленке, пересекающей конусы перпендикулярно их оси, образуют сплошные концентрически расположенные окружности. На фиг. 42 приведена такая рентгенограмма.
Взаимное расположение и радиусы колец на рентгенограмме будут различны для кристаллов, имеющих различную структуру. Полученные таким путем снимки анализируют и рассчитывают по приведенному выше уравнению.
Анализ структуры металлов при помощи рентгеновских лучей окончательно
подтверждает их кристаллическую природу.
Правильное представление о строении металлов является необходимым условием для понимания их свойств и служит базой для рационализации процессов их обработки.
В России создан ряд конструкций электронных микроскопов (акад. А. А. Лебедев и др.); пятилетним планом восстановления и развития народного
хозяйства России предусмотрено освоение производства электронных микроскопов и широкое внедрение их в практику научных исследований.
Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ
Все металлы и сплавы имеют кристаллическое, или зернистое, строение. Их кристаллы состоят из мельчайших частиц — атомов, которые располагаются в строго определенном порядке, образуя мельчайшие кристаллические решетки, которые можно рассмотреть с помощью рентгеновских лучей. Атомы находятся в непрерывном движении. При нагреве металла движение атомов усиливается, а по достижении температуры плавления кристаллические решетки разрушаются, благодаря чему расплавленный металл приобретает жидкотекучесть. При охлаждении металла кристаллические решетки образуются вновь.
Форма, размеры и расположение зерен характеризуют внутреннее строение —структуру металла, которая наряду с химическим составом оказывает большое влияние на свойства металлов и сплавов: чем меньше зерно, тем плотнее материал, тем выше его механические свойства.
Структуру сплавов определяют в металлографической лаборатории путем рассмотрения шлифа (отшлифованного до зеркального блеска среза кусочка сплава) при увеличении в 100—500 и более раз с помощью металлографического микроскопа. Для выявления отдельных структурных составляющих сплава шлиф обрабатывают растворами кислот.
Железоуглеродистые сплавы в зависимости от содержания углерода подразделяются на две группы — чугуны и стали. Если в железоуглеродистом сплаве содержится до 2% углерода, то его называют сталью, а если больше 2% углерода — то чугуном.
Железоуглеродистые сплавы могут содержать в качестве структурных составляющих графит, феррит, цементит, перлит и др.
Графит —свободный углерод, находящийся в основной массе сплава в виде пластйнок или зерен. Присутствуя в сером чугуне в виде пластин, графит как бы разделяет основную металлическую массу и тем самым снижает прочность и пластичность. Шаровидный графит в меньшей степени нарушает сплошность основной структуры сплава, благодаря чему повышается его прочность и пластичность.
Феррит — почти чистое железо, в котором углерод растворен в небольшом количестве (до 0,04%). Обладает большой вязкостью и пластичностью, низкой прочностью и сопротивляемостью износу.