Что называют подкоренным выражением

Что такое
квадратный корень

В уроке «Степень числа» мы проходили, что возвести в квадрат число означает умножить число на само себя. Кратко запись числа в квадрате выглядит следующим образом:

Но как быть, если нам нужно получить обратный результат? Например, узнать, какое число при возведении в квадрат дало бы число « 9 »?

Нахождение исходного числа, которое в квадрате дало бы требуемое, называется извлечением квадратного корня.

Извлечение квадратного корня — это действие, обратное возведению в квадрат.

У квадратного корня есть специальный знак. Исходя из вычислений выше, нетрудно догадаться, что число, которое в квадрате дает « 9 », это число « 3 ». Запись извлечения квадратного корня из числа « 9 » выглядит так:

Читаем запись: «Арифметический квадратный корень из девяти». Можно опустить слово «арифметический». Словосочетания «арифметический квадратный корень» и «квадратный корень» полностью равнозначны.

Число под знаком корня называют подкоренным выражением.

Что называют подкоренным выражением

Подкоренное выражение может быть представлено не только одним числом. Всё, что находится под знаком корня, называют подкоренным выражением. Оно может сожержать как числа, так и буквы.

Что называют подкоренным выражением Что называют подкоренным выражением

Извлекать квадратный корень можно только из положительного числа.

Квадратный корень из нуля

Квадратный корень из нуля равен нулю.

Квадратный корень из единицы

Квадратный корень из единицы равен единице.

Как найти квадратный корень из числа

Квадратные корни из целых чисел, чьи квадраты известны, вычислить довольно просто. Для этого достаточно выучить таблицу квадратов.

Решение примеров с квадратными корнями

№ 307 Алимов 9 класс

Вычислить арифметический квадратный корень из числа.

Как найти квадратный корень из десятичной дроби

При нахождении квадратного корня из десятичной дроби нужно выполнить следующие действия:

Более подробно разберем на примере ниже.

№ 307 Алимов 9 класс

Вычислить квадратный корень из десятичной дроби « 0,16 ».

По первому пункту правила забудем про запятую в десятичной дроби и представим ее в виде целого числа « 16 ».

Нетрудно вспомнить, какое число в квадрате дает « 16 ». Это число « 4 ».

Вспомним правило умножения десятичных дробей. Количество знаков после запятой в результате умножения десятичных дробей равняется сумме количества знаков после запятой каждой дроби.

Т.е., например, при умножении « 0,15 » на « 0,3 » в полученном произведении будет десятичная дробь с тремя знаками после запятой.

Значит, при вычислении квадратного корня √ 0,16 нам нужно найти десятичную дробь, у которой был бы только один знак после запятой. Мы исходим из того, что в результате умножения десятичной дроби на саму себя в результате должно было получиться два знака после запятой, как у десятичной дроби « 0,16 ».

Получается, что ответ — десятичная дробь « 0,4 ».

Убедимся, что квадрат десятичной дроби « 0,4 2 » дает « 0,16 ». Умножим в столбик « 0,4 » на « 0,4 ».

Что называют подкоренным выражением

Рассмотрим другой пример вычисления квадратного корня из десятичной дроби. Вычислить:

Представим вместо десятичной дроби « 1,44 » целое число « 144 ». Какое число в квадрате даст « 144 »? Ответ — число « 12 ».

Так как в десятичной дроби « 1,44 » — два знака после запятой, значит в десятичной дроби, которая дала в квадрате « 1,44 » должен быть один знак после запятой.

Убедимся, что « 1,2 2 » дает в квадрате « 1,44 ».

Не из всех чисел удается легко извлечь квадратный корень. Например, совершенно неочевидно, чему равен √ 2 или √ 3 и т.п.

В самом деле, какое число в квадрате даст « 2 »? Или число « 3 »? Такое число не будет целым. Более того, оно представляет из себя непериодическую десятичную дробь и входит в множество иррациональных чисел.

Что делать, когда в ответе остаются подобные квадратные корни? Как, например, в примере ниже:

√ 15 − 2 · 4 = √ 15 − 8 = √ 7

Нет такого целого числа, которое бы дало в квадрате число « 7 ». Поэтому, перед завершением задачи внимательно читайте её условие.

Если в задаче дополнительно ничего не сказано об обязательном вычислении всех квадратных корней, тогда ответ можно оставить с корнем.

√ 15 − 2 · 4 = √ 15 − 8 = √ 7

Если в задании сказано, что необходимо вычислить все квадратные корни с помощью микрокалькулятора, то после вычисления квадратного корня на калькуляторе округлите результат до необходимого количества знаков.

Текст задания в таком случае может быть написан следующим образом:

«Вычислить. Квадратные корни найти с помощью калькулятора и округлить с точностью до « 0,001 ».

√ 15 − 2 · 4 = √ 15 − 8 = √ 7 ≈ 2,646

Источник

Корень и его свойства

Что называют подкоренным выражениемТема в математике «Корень и его свойства» нередко вызывает затруднения у школьников, особенно при решении примеров. В данной статье описаны основные свойства корней, а также правила сложения, вычитания, умножения и деления. Наглядные примеры помогаю понять, как решать задания с корнями.

Определение «Корень»

Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если число a возвести во вторую степень (в квадрат).
Например, √ 64 = 8 (√ 64 равно числу 8).

Формула: a 2 = a

Число, стоящее под знаком корня, называется подкоренным числом. Если под знаком корня стоит целое выражение, то его называют подкоренным выражением.
Свойство квадратного корня: для действительных чисел не существует квадратный корень из отрицательного числа, так как возведение числа в квадрат будет всегда неотрицательным числом.

Извлечение корней: примеры

Найти корень из числа можно одним из следующих способов:

Приведение корней с разными показателями

Для того, чтобы упростить выражение с корнями, которое содержит корни разных степеней, необходимо привести все корни к одной степени.

Например, есть квадратный корень (второй степени √ 2 ) и кубический корень (третьей степени 3 √ 3 ).
Во-первых, необходимо найти наименьшее общее кратное (НОК) для степеней. В нашем примере НОК=6 (2х3).
Во-вторых, применим свойство a = n √ a n : √ 2 = 2 √ 2 = 6 √ 2 3 = 6 √ 8 ; 3 √ 3 = 6 √ 3 2 = 6 √ 9
Получилось два корня одинаковой степени, с которыми можно совершать различные математические действия.

Корень: сложение и вычитание корней

Основное правила сложения и вычитания квадратных корней: сложение и вычитание квадратного корня возможны только при условии одинакового подкоренного выражения.

Примеры:
2√ 3 + 3√ 3 = 5√ 3
2√ 3 + 2√ 4 – не выполняется.

Алгоритм действия:
1. Упростить подкоренное выражение путем разложения на простые множители.
2. Затем нужно извлечь корень из квадратного числа и записать полученное значение перед знаком корня.
3. После процесса упрощения необходимо подчеркнуть корни с одинаковыми подкоренными выражениями — только их можно складывать и вычитать.
4. У корней с одинаковыми подкоренными выражениями необходимо сложить или вычесть множители, которые стоят перед знаком корня. Подкоренное выражение остается без изменений. Нельзя складывать или вычитать подкоренные числа!

Корень: умножение

Умножение корней без множителей

Произведение корней из чисел равно корню из произведения этих чисел.
√ a*b =√ a *√ b
Важно: между собой можно умножать только одинаковые степени корней, то есть можно умножить один квадратный корень на другой, но нельзя умножить квадратный корень на корень кубической степени.
Примеры:
√ 2 х √ 3 = √ 6
√ 6 х √ 3 = √ 18 = √ 3х3х2 = 3√ 2

Умножение корней с множителями

При умножении корней с множителями нужно отдельно перемножить множители и подкорневые выражения (числа). Подкорневые числа можно перемножать между собой только в том случае, если они имеют одинаковые степени (см. умножение корней без множителей). В случае отсутствия множителя, он равен единице.
Примеры:
3
√ 2 х √ 5 = (3х1) √ (2*5) = 3√ 10

4√ 2 х 3√ 3 = (3х4) √ (2х3) = 12√ 6

Корень: деление

Основной правило деления — подкоренные выражения делятся на подкоренные выражения, а множители на множители.
√ a:b =√ a :√ b
В процессе деления квадратных корней дроби упрощаются.

Деление корней без множителей

Частное корней из чисел равно корню из частного этих чисел.
Важно: между собой можно делить только одинаковые степени корней, то есть можно делить один квадратный корень на другой, но нельзя делить квадратный корень на корень кубической степени.
Пример. √ 21 :√ 3 =√ 21:3 =√ 7

Деление квадратных корней с множителями

Примеры для практики

Чтобы попрактиковаться решать примеры на вычисление квадратный корней, можно скачать программу «Корни квадратные«

Источник

Подкоренные выражения: как решать

Вы будете перенаправлены на Автор24

Понятие корня

Тема о подкоренных выражениях относится к курсу алгебры. Будем считать, что понятие степени читателю уже известно. Понятие корня актуально, когда речь идёт примерах с иррациональными числами. Такие примеры встречаются и в курсе геометрии и даже могут описывать длины. Но перейдём к определениям.

Решение подкоренных выражений строится на знании и применении свойств корня. Для начала, приведём определение корня.

Свойства корня с примерами

Основное свойство корня: величина корня не изменится, если показатель корня и показатель подкоренного выражения умножить или разделить на одно и то же число. Отсюда следует, что корни разных степеней можно привести к одинаковым показателям.

Приведём простой пример.

Рисунок 1. Пример. Автор24 — интернет-биржа студенческих работ

Также имеются следующее свойства:

Рисунок 2. Свойства. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Свойства. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Рисунок 4. Свойства. Автор24 — интернет-биржа студенческих работ

Решим простые примеры.

Рисунок 5. Пример. Автор24 — интернет-биржа студенческих работ

Рисунок 6. Пример. Автор24 — интернет-биржа студенческих работ

Преобразования корней

При решении корней кроме вышеуказанных свойств применяют простейшие преобразования, такие как

Рисунок 7. Вынесение множителей за знак корня. Автор24 — интернет-биржа студенческих работ

Рисунок 8. Подведение множителей под знак корня. Автор24 — интернет-биржа студенческих работ

Для последнего случая приведём пример с числами:

Рисунок 9. Освобождение подкоренного выражения от знаменателей. Автор24 — интернет-биржа студенческих работ

Рассмотрим пример, в котором показывается как происходит освобождение знаменателя дроби от корней.

Рисунок 10. Пример. Автор24 — интернет-биржа студенческих работ

Рисунок 11. Пример. Автор24 — интернет-биржа студенческих работ

Пример решения

На практике необходимо помнить все перечисленные свойства и преобразования корней, а также свойства степеней, которые, как мы условились, читателю уже известны. Решим типичный пример, который встречается, например, в ЕГЭ.

Источник

Алгебра

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Арифметический квадратный корень

Рассмотрим задачу. Нам известно, что длина квадрата равна 14 см. Какова площадь этого квадрата? Из курса геометрии мы знаем, что для ответа на вопрос надо просто умножить сторону саму на себя, то есть возвести ее в квадрат:

Так, 5 – это квадратный корень из числа 25, так как

Очень часто квадратный корень является не целым, а дробным числом. Так, корень из 2 примерно равен 1,414213562 (способы вычисления значения корня будут рассмотрены в этом же уроке, но позже).

Отметим, что порою можно указать для числа не один, а сразу два квадратных корня. Они будут отличаться своим знаком, но совпадать по абсолютной величине (модулю). Так число (–5) также является квадратным корнем из 25:

Вообще у любого положительного числа есть 2 квадратных корня, у любого отрицательного числа их вообще нет, и только у нуля есть единственное значение корня – сам нуль. Докажем это.

Пусть есть произвольное число а, для которого надо вычислить квадратный корень. Обозначим этот корень как х. Тогда по определению можно составить уравнение:

Видно, что при а> 0 графики пересекаются в 2 точках, то есть существует два квадратных корня, которые отличаются лишь своими знаками.

Для определенности математики ввели понятие арифметического квадратного корня.

Ещё раз уточним, что у числа может быть два квадратных корня. Например, у числа 25 это –5 и 5:

Арифметическим же называют тот квадратный корень, у которого НЕТ знака минус.

Существует специальный символ для арифметического квадратного корня, который именуют знаком радикала, или просто знаком корня. Выглядит он так:

Если надо показать, что, например, арифметический квадратный корень (часто говорят просто корень) из 25 равен 5, то получается такая запись:

Под знаком радикала может стоять и выражение, содержащее переменные величины. Для его обозначения используют термин подкоренное выражение. Так, в записи

выражением х 2 + 2х + 2 является подкоренным.

Мы уже поняли, что из отрицательного числа невозможно извлечь квадратный корень, ведь каждое действительное число при умножении на само себя становится неотрицательным. Поэтому если под знаком радикала находится отрицательное число, то говорят, что выражение не имеет смысла (так же как и дробное выражение, у которого в знаменателе стоит ноль). Так, бессмысленны выражения:

Если под корнем находиться переменная, то при одних ее значениях выражение с корнем имеет смысл, а при других нет. Так, выражение

при х = 9 имеет значение, равное двум:

Но если х = 4, то получаем бессмысленное выражение:

Изучая понятие иррационального числа, мы уже сталкивались с корнями. Исторически именно корень из 2 стал первым числом, для которого была доказана его иррациональность. Числа, чей квадратный корень является целым числом, называются полными квадратами. Примерами полных квадратов являются:

Для всех натуральных чисел, не являющихся полными квадратами, можно доказать, что их квадратные корни – это иррациональные числа.

Стоит отметить, что открытие иррациональностей корней изменило представления древних греков о числах и сыграло огромную роль в развитии математики.

Теперь рассмотрим порядок действий в выражениях с корнями. Сначала всегда производятся операции в скобках, потом под знаком радикала, далее происходит возведение в степень, и лишь потом другие арифметические операции. Например, есть выражение

Покажем последовательность действий, выделяя их красным цветом:

Если в ходе вычислений получили корень не из полного квадрата, то его следует оставить как есть, и продолжать вычисления, например:

Одинаковые корни можно складывать и вычитать друг с другом:

Из определения квадратного корня следует очевидное тождество:

Приведем пример с конкретными числами:

Однако здесь важно учитывать, что под знаком радикала не может находиться отрицательное число. Так, некорректной будет запись

так как под радикалом слева стоит отрицательное число. Но допускается такая запись:

потому что под знаком радикала слева стоит положительная величина (– 3)•( – 3) = 9.

Напомним, что модулем числа называется его величина, взятая без учета знака. Для обозначения модуля используются квадратные скобки:

Можно записать следующее тождество, связывающее модуль числа с его корнем:

Вычисление квадратного корня

Ранее для выполнения арифметических операций мы использовали метод «столбика». А как производить вычисление квадратного корня? Существует несколько приемов, мы рассмотрим простейший из них.

Видно, что чем выше на оси Оу располагается число, тем правее на оси Ох находится его квадратный корень.

Зная это свойство, легко оценить значение корня из любого числа. Продемонстрируем это на примере вычисления значение корня из 2. Нам известно, что

Теперь мы можем записать неравенства:

Получается, что корень имеет значение, находящееся между 1,4 и 1,5, то есть

Попытаемся определить ещё одну цифру после запятой:

Отсюда следует, что:

Продолжая подобные вычисления, можно вычислить любое количество знаков после запятой:

Конечно, на практике все вычисления выполняются компьютером, а не вручную. Однако программисты стремятся написать программы так, чтобы они работали как можно быстрее, то есть получали результат, выполняя меньшее количество вычислений. Поэтому на практике чаще используется метод бисекции (деления надвое), который отличается большей эффективностью. Для начала нужно найти очевидную оценку корня, например:

Получили, что корень из 2 находится между 1 и 2. Теперь найдем среднее арифметическое этих двух значений:

Возведем среднее арифметическое в квадрат:

Теперь мы можем записать неравенство

То есть искомое нами значение находится между 1 и 1,5. Снова найдем среднее этих двух оценок и возведем его в квадрат:

Зная это, можем записать:

На каждом следующем шаге вычислений мы будем всё точнее определять оценки корня, при этом вычислений мы делаем не очень много.

Периодически могут встречаться задания, в которых надо грубо оценить значение квадратного корня.

Пример. Сколько целых чисел на координатной прямой располагается между

Решение: Ближайшие к числу 60 полные квадраты – это 64 и 49, поэтому можно записать:

Также можно оценить и корень из 140:

Получаем, что между корнями располагается четыре числа: 8, 9, 10 и 11:

Функция квадратного корня

Каждому числу соответствует не более чем 1 арифметический квадратный корень. Поэтому формула

задает функцию. Исследуем ее.

Так как под знаком радикала может находиться лишь неотрицательное число, то областью определения корня является множество всех неотрицательных чисел. Такова же и область допустимых значений.

Построим график квадратного корня по точкам. Для этого вычислим ее значения в нескольких точках (указана точность до 0,1):

График функции квадратного корня будет выглядеть так:

Мы должны найти а на оси Ох, построить от найденной точки вертикальную линию до пересечения с графиком, а потом провести горизонтальную линию. Но если нам надо вычислить корень из положительного числа b, то мы должны действовать в обратном порядке: найти b на вертикальной оси, провести горизонтальную линию до пересечения с параболой, и потом опустить перпендикуляр на горизонтальную ось:

Получается, для вычисления обеих функций можно использовать один график! Но, так как традиционно аргумент функции обозначают буквой х, а саму функцию как у, а также ось Ох располагают горизонтально, то для получения графика обратной функции надо буквально повернуть график основной функции так, чтобы оси Ох и Оу поменялись местами:

Действительно, в результате поворота получили уже знакомый график функции корня из х. Осталось лишь правильно переименовать оси и повернуть цифры в привычное положение.

Соответственно, симметричны относительно этой прямой и графики обратных функций:

Исключительно для большей наглядности (чтобы была очевидна симметрия, о которой идет речь), повернем эту картинку на 45°:

Свойства арифметического квадратного корня

Для упрощения некоторых выражений необходимо использовать особые правила работы с корнями. Сформулируем первое из них:

Математически это правило записывается так:

Тождество работает для любого количества множителей, а также в обратную сторону:

Однако следующее преобразование недопустимо:

Дело в том, что под знаком радикала не может быть отрицательное число! Слева под двумя радикалами стоят отрицательные числа, а справа под корнем находится уже положительная величина (– 2)•(– 32) = 64. В результате выражение слева не имеет смысл, а справа – имеет, поэтому знака равенства между ними быть не может.

Докажем это правило. Для этого возведем во вторую степень выражение

Получили, что по определению корня можно записать:

Следующее свойство касается дробей:

Символически это выглядит так:

Приведем примеры использования этого свойства:

Теперь докажем это правило. Можно записать, что

Значит, по определению верно равенство

Третье правило помогает извлекать корень из числа, возведенного в степень:

где а –действительное число (в том числе и отрицательное), а k – натуральное число.

Это тождество помогает выполнить следующие действия:

Стоит обратить внимание, что в последнем случае под корнем НЕ стоит отрицательное число, так как на самом деле (– 2) 10 – это положительное число. Вообще при возведении любого числа в четную степень получается неотрицательное число.

Для доказательства этого факта используем то, что

Зная это, можно выполнить преобразования:

Преобразование выражений с квадратными корнями

Изученные правила помогают преобразовывать некоторые выражения. Так, можно вынести множитель из-под знака корня:

Это действие может использоваться для сложения корней, у которых, казалось бы, стоят разные числа под знаком радикала:

Обратное действие называют внесением множителя под знак корня:

Пример. Какое число больше

Решение. Внесем множитель под знак корня:

Из двух корней больше тот, у которого больше подкоренное выражение, поэтому

Из этого следует, что

Заметим, что под знак радикала может быть внесен исключительно неотрицательный множитель! Знак минуса должен остаться перед радикалом:

Принято считать, что с дробью, содержащей радикал, проще работать, когда этот радикал находится в числителе, а не знаменателе. В связи с этим стремятся избавиться от иррациональности в знаменателе. В простейшем случае дробь просто домножают на квадратный корень:

Как видим, корень «переехал» из знаменателя в числитель. Несколько сложнее производится освобождение от иррациональности, если в знаменателе стоит сумма или разность корней. В этом случае помогает формула разности квадратов:

Рассмотрим несколько задач.

Пример. Найдите наибольшее значение выражения

Решение. По формуле разности квадратов можно записать:

Зная это, заменим знаменатель дроби:

Эта дробь принимает наибольшее значение тогда, когда ее числитель, наоборот, принимает минимальное значение. Это произойдет при а = 0, так как арифметический квадратный корень не может быть отрицательным. Тогда наибольшее значение дроби будет составлять

Пример. Упростите выражение

Довольно тяжелым является случай, когда под знаком корня находится другой корень. Выражения вида

называют двойным радикалом.

Существует формула двойного радикала, с помощью которой его можно иногда упростить:

Для доказательства справедливости этого тождества возведем его правую часть в квадрат, используя формулу квадрата суммы (х ± у) 2 = х 2 ± 2ху + у 2 :

Принципиально важно, что величина а 2 – b должна быть неотрицательной. Рассмотрим преобразование двойных радикалов на примере. Пусть надо освободиться от внешнего радикала в выражении

Для этого сначала внесем двойку под знак внутреннего радикала, а потом воспользуемся формулой:

Заметим, что формула двойного радикала полезна в том случае, если выражение а 2 – b является полным квадратом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *