Что называют орбиталью химия
Атомная орбиталь
Волновая функция рассчитывается по волновому уравнению Шрёдингера в рамках одноэлектронного приближения (метод Хартри — Фока) как волновая функция электрона, находящегося в самосогласованном поле, создаваемым ядром атома со всеми остальными электронами атома.
Сам Э.Шрёдингер рассматривал электрон в атоме как отрицательно заряженное облако, плотность которого пропорциональна квадрату значения волновой функции в соответствующей точке атома. В таком виде понятие электронного облака было воспринято и в теоретической химии.
Однако большинство физиков не разделяли убеждений Э.Шрёдингера — доказательства существования электрона как «отрицательно заряженного облака» не было. Макс Борн обосновал вероятностную трактовку квадрата волновой функции. В 1950 г. Э.Шрёдингер в статье «Что такое элементарная частица?» вынужден согласиться с доводами М.Борна, которому в 1954 году присуждена Нобелевская премия по физике с формулировкой «За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции».
Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.
Содержание
Квантовые числа и номенклатура орбиталей
Буквенные обозначения атомных орбиталей произошли от описания спектральных линий в атомных спектрах: s (sharp) — резкая серия в атомных спектрах, p (principal)— главная, d (diffuse) — диффузная, f (fundamental) — фундаментальная.
В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число — соответствующей буквой (см. таблицу ниже) и магнитное квантовое число — выражением в нижнем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2px, 3dxy, 4fz(x²-y²). Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.
Геометрическое представление
Геометрическое представление атомной орбитали — область пространства, ограниченная поверхностью равной плотности (эквиденситной поверхностью) вероятности или заряда. Плотность вероятности на граничной поверхности выбирают исходя из решаемой задачи, но, обычно, таким образом, чтобы вероятность нахождения электрона в ограниченной области лежала в диапазоне значений 0,9-0,99.
Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задаёт размер орбитали.
Для линейных комбинаций Ylm приняты следующие обозначения:
Значение орбитального квантового числа | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|
Значение магнитного квантового числа | 0 | 0 | 0 | ||||||
Линейная комбинация | |||||||||
Обозначение |
Заполнение орбиталей электронами и электронная конфигурация атома
На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули. Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.
Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют электронной конфигурацией атома.
Электронная орбиталь
Название «орбиталь» (а не орбита) отражает геометрическое представление о движении электрона в атоме; такое особое название отражает тот факт, что движение электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.
Содержание
Квантовые числа и номенклатура орбиталей
Геометрическое представление
Поскольку энергия электрона определяется кулоновским взаимодействием и, следовательно, расстоянием от ядра, то главное квантовое число n задает размер орбитали.
Для линейных комбинаций Ylm приняты следующие обозначения:
Значение орбитального квантового числа | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|
Значение магнитного квантового числа | 0 | 0 | 0 | ||||||
Линейная комбинация | — | — | — | ||||||
Обозначение |
Дополнительным фактором, иногда учитываемым в геометрическом представлении, является знак волновой функции (фаза). Этот фактор существеннен для орбиталей с орбитальным квантовым числом l, отличным от нуля, то есть не обладающих сферической симметрией: знак волновой функции их «лепестков», лежащих по разные стороны узловой плоскости, противоположен. Знак волновой функции учитывается в методе молекулярных орбиталей МО ЛКАО (молекулярные орбитали как линейная комбинация атомных орбиталей).
Заполнение орбиталей электронами и электронная конфигурация атома
На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули. Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.
Краткую запись распределения электронов в атоме по различным электронным оболочкам атома с учётом их главного и орбитального квантовых чисел n и l называют электронной конфигурацией атома.
Разница между атомной и молекулярной орбиталью
Главное отличие
Основное различие между атомной орбиталью и молекулярной орбиталью состоит в том, что атомная орбиталь содержит электроны, на которые влияет одно положительное ядро, тогда как молекулярная орбиталь содержит электроны, на которые влияет более двух ядер, в зависимости от количества атомов в молекуле.
Атомная орбиталь против молекулярной орбитали
Орбиталь атома считается областью, в которой существует наибольшая вероятность нахождения электрона в атоме. Напротив, молекулярная орбиталь считается областью с наибольшей вероятностью обнаружения электрона молекулы. Электронное облако вокруг атома отвечает за образование атомных орбиталей, тогда как слияние атомных орбиталей, состоящих из относительно одинаковой энергии, отвечает за образование молекулярных орбиталей.
Тип атомных орбиталей, такой как s, p, d или f, определяет форму атомных орбиталей; с другой стороны, форма атомных орбиталей, составляющих молекулу, определяет форму молекулярной орбитали. Уравнение Шредингера используется на атомных орбиталях, тогда как на молекулярных орбиталях обычно используется линейная комбинация атомных орбиталей.
На электронное облако на атомных орбиталях может воздействовать одно ядро, в то время как на электронное облако на молекулярных орбиталях могут воздействовать два или более ядер. Атомная орбиталь, как известно, моноцентрическая, поскольку она присутствует рядом с одним ядром, в то время как молекулярная орбиталь называется полицентрической, поскольку она находится рядом с двумя или многими различными ядрами.
Атомные орбитали представлены как a, p, d и f, в то время как молекулярные орбитали состоят из двух типов: связывающие молекулярные орбитали или антисвязывающие молекулярные орбитали. Электронная конфигурация внутри атомных орбиталей не влияет на постоянство атома, тогда как электронная конфигурация на молекулярной орбитали действительно влияет на стабильность молекулы.
Сравнительная таблица
Атомная орбиталь | Молекулярная орбиталь |
Научная цель, которая определяет волнообразное поведение отдельного электрона или пары электронов в атоме, известна как атомная орбиталь. | Научная цель, которая определяет волнообразное поведение отдельного электрона в молекуле, известна как молекулярная орбиталь. |
Теория | |
Область наибольшей вероятности обнаружения электрона в атоме. | Область наибольшей вероятности нахождения электрона молекулы. |
Формирование | |
Электронное облако вокруг атома отвечает за образование атомных орбиталей | Слияние атомных орбиталей, которые состоят из относительно одинаковой энергии, отвечает за образование молекулярных орбиталей. |
Форма | |
Тип атомных орбиталей, таких как s, p, d или f, определяет форму | Форма атомных орбиталей, составляющих молекулу, определяет форму |
Описание электронной плотности | |
Уравнение Шредингера используется для описания электронной плотности | Линейная комбинация атомных орбиталей (ЛКАО) обычно используется при описании электронной плотности. |
Ядро | |
Моноцентрический, поскольку он присутствует рядом с одним ядром | Полицентричный, поскольку он находится рядом с двумя или многими разными ядрами |
Эффект ядра | |
На электронное облако может воздействовать одно ядро | На электронное облако могут воздействовать два или более ядер. |
Типы и номенклатура | |
Найдено как a, p, d и f | Состоит из двух типов: связывающие молекулярные орбитали или разрыхляющие молекулярные орбитали. |
Влияние электронной конфигурации | |
Электронная конфигурация не влияет на стабильность атома. | Электронная конфигурация действительно влияет на стабильность молекулы. |
Что такое атомная орбиталь?
Область, в которой существует наибольшая вероятность обнаружения электрона, известна как атомная орбиталь. Возможность расположения атомного электрона можно объяснить с помощью квантовой механики. Но квантовая механика не может объяснить конкретную энергию электрона в определенный момент времени. Эта конкретная энергия объясняется принципом неопределенности Гейзенберга.
Решения уравнения Шредингера используются для определения электронной плотности данного атома. На атомной орбитали может находиться максимум два электрона. Атомная орбиталь классифицируется по подуровням как s, p, d и f. Орбитали этих подуровней имеют разную форму.
Орбиталь подуровня s оказывается сферической и содержит максимум два электрона и состоит только из одного подуровня энергии. По форме p-орбиталь представляет собой гантель и содержит до шести электронов. В нем присутствуют три субэнергетические стадии.
Орбитали d и f содержат более сложные формы, поскольку орбиталь d содержит пять подуровней энергии и до 10 электронов. В то время как f-орбиталь содержит семь подуровней энергии и максимум от десяти до пятнадцати электронов. Уровни энергии орбиталей присутствуют в направлении s
Что такое молекулярная орбиталь?
Теория молекулярных орбиталей объяснила свойства молекулярных орбиталей. Теория молекулярных орбиталей была впервые предложена Ф. Хундом и Р. С. Малликеном в 1932 г.
Согласно теории молекулярных орбиталей, когда атомы соединяются в молекулу, перекрывающиеся атомные орбитали обычно теряют свою форму из-за влияния ядер. Новые орбитали, которые встречаются в молекулах, теперь известны как молекулярные орбитали.
Слияние атомных орбиталей, которые состоят из относительно одинаковой энергии, отвечает за образование молекулярных орбиталей. Молекулярные орбитали не принадлежат только одному атому в молекуле, как в атомной орбитали, но они входят в ядра всех атомов, которые образуют молекулу. Итак, ядра многих разных атомов действуют как полицентрические ядра.
Окончательная форма молекулярных орбиталей сложна, потому что форма атомных орбиталей, из которых строятся молекулы, обычно определяет форму молекулярных орбиталей. В соответствии с правилом Ауфбау молекулярные орбитали обычно заполняются в порядке от низкоэнергетической орбитали к высокоэнергетической орбитали.
Ключевые отличия
Заключение
Вышеупомянутое обсуждение заключает, что свойства атомных орбиталей могут определяться одним ядром атомов. Напротив, свойства молекулярных орбиталей могут быть определены слиянием атомных орбиталей, из которого строится молекула.
ОРБИТАЛЬ
ОРБИТАЛЬ – область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).
Электрон движется в атоме вокруг ядра не по фиксированной линии-орбите, а занимает некоторую область пространства. Например, электрон в атоме водорода может с определенной вероятностью оказаться либо весьма близко к ядру, либо на значительном удалении, однако существует определенная область, где его появление наиболее вероятно. Графически орбиталь изображают в виде поверхности, очерчивающей область, где вероятность появления электрона наибольшая, иначе говоря, электронная плотность максимальна. У атома водорода орбиталь электрона имеет сферическую (шаровую) форму:
К настоящему моменту описано пять типов орбиталей: s, p, d, f и g. Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.
Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.
s-Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:
На первом электронном уровне каждого атома находится только одна s-орбиталь. Начиная со второго электронного уровня помимо s-орбитали появляются также три р-орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р-электрона в районе атомного ядра. Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:
В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.
У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s-орбитали (отмечены синим цветом) и по одному электрону на двух р-орбиталях (отмечены красным и желтым цветом), третья орбиталь – рz-вакантная:
Гибридизация.
В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s-орбиталь и три р-орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:
Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:
Участие орбиталей в образовании простых химических связей.
Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.
Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.
В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:
Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:
Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:
Участие орбиталей в образовании кратных химических связей.
Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s-орбиталь и только две р-орбитали (рх и ру), третья орбиталь – pz, направленная вдоль оси z, в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:
Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.
Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:
При образовании ацетилена в гибридизации участвует одна одна s-орбиталь и одна рx-орбиталь (орбитали pyи pz, в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х:
В итоге молекула ацетилена имеет палочкообразную форму:
У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s— и двух р-орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р-орбитали, не участвующие в гибридизации, показаны полупрозрачными:
Шесть оставшихся р-орбиталей взаимоперекрываются, образуя молекулярную орбиталь в виде двух кольцевых областей, над и под плоскостью бензольного цикла:
Возникает единая замкнутая электронная система (см. также АРОМАТИЧНОСТЬ).
Молекула бензола плоская, что задано плоской конфигурацией «трехлучевых звезд», из которых она собрана. Молекулярную орбиталь, образованную перекрыванием шести атомных р-орбиталей обозначают в виде кольцевого символа внутри бензольного цикла:
В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали (см. также ТРЕХЦЕНТРОВЫЕ СВЯЗИ).
Орбитали высоких уровней.
Начиная с четвертого электронного уровня, у атомов появляются пять d-орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d-орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d-орбиталь представляет собой объемную восьмерку, продетую в кольцо:
d-Орбитали могут образовывать гибриды с s- и p-орбиталями. Параметры d-орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.
Начиная с шестого электронного уровня, у атомов появляются семь f-орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f-Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:
f-Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..
Перспективы.
На восьмом электронном уровне находится девять g-орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).
Форма g-орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f-орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:
В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.