Что называют оптической плотностью раствора
Оптическая плотность
Полезное
Смотреть что такое «Оптическая плотность» в других словарях:
оптическая плотность — оптическая плотность: Мера почернения (окраски) фотографического слоя, равная десятичному логарифму обратной величины коэффициента пропускания или коэффициента отражения. Источник … Словарь-справочник терминов нормативно-технической документации
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — мера непрозрачности вещества, равная десятичному логарифму отношения потока излучения Fо, падающего на слой вещества, к потоку прошедшего излучения F, ослабленного в результате поглощения и рассеяния: D=lg(Fо/F). Оптическая плотность логарифм… … Большой Энциклопедический словарь
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — (D), мера непрозрачности слоя в ва толщиной l для световых лучей; характеризует ослабление оптического излучения в слоях разл. в в (красителях, светофильтрах, р рах, газах и т. п.). Для неотражающего слоя О. п. равна: D = lgI0/I=kll, где I… … Физическая энциклопедия
Оптическая плотность — мера непрозрачности к. л. среды (напр., бумаги, пленки, оттиска на бумаге, фотоотпечатка), равная десятичному логарифму отношения падающего на среду потока излучения к потоку, прошедшему через эту среду, или, что то же, логарифму величины,… … Издательский словарь-справочник
Оптическая плотность — степень пропускания света для прозрачных объектов и отражения для непрозрачных. В полиграфии используется для качественной оценки издательских оригиналов, промежуточных изображений (фотоформ) и оттисков … Реклама и полиграфия
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — физ. характеристика и мера непрозрачности слоя вещества для прохождения световых лучей; равна десятичному логарифму отношения потока излучения (плоской монохроматической волны), падающего на слой вещества, к потоку прошедшего излучения,… … Большая политехническая энциклопедия
оптическая плотность — мера непрозрачности вещества, равная десятичному логарифму отношения потока излучения F0, падающего на слой вещества, к потоку прошедшего излучения F, ослабленного в результате поглощения и рассеяния: D = lg(F0/F). Оптическая плотность логарифм… … Энциклопедический словарь
Оптическая плотность — У этого термина существуют и другие значения, см. Плотность (значения). Оптическая плотность мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как… … Википедия
оптическая плотность — optical dense оптическая плотность. Определяемая уровнем поглощения света количественная характристика раствора, которая, в соответствии с законом Бира Ламберта, прямо пропорциональна концентрации растворенного вещества, E=lgIo/I=kcb (где Io… … Молекулярная биология и генетика. Толковый словарь.
Оптическая плотность — 2.22. Оптическая плотность десятичный логарифм величины, обратной коэффициенту пропускания. Источник: Санитарные нормы и правила устройства и эксплуатации лазеров (утв. Главным государственным санитарным врачом СССР 31.07.1991 N 5804 91) … Официальная терминология
оптическая плотность — optinis tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Į sugeriančiąją sistemą kritusios ir per ją perėjusios šviesos intensyvumų dalmens dešimtainis logaritmas, t. y. D(λ) = –lg(τ(λ)); čia τ(λ) – spektrinis praleidimo… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Плотность
Плотность — это интенсивность распределения одной величины по другой.
Термин объединяет несколько различных понятий, таких как: плотность вещества; оптическая плотность; плотность населения; плотность застройки; плотность огня и многие другие. Рассмотрим два понятия, касающихся неразрушающего контроля.
1. Плотность вещества.
В физике плотностью вещества называют массу этого вещества, содержащуюся в единице объёма при нормальных условиях. Тела одинакового объёма, изготовленные из различных веществ, обладают различной массой, что и характеризует их плотность. К примеру, два куба одинаковых размеров, изготовленные из чугуна и алюминия, будут отличаться весом и плотностью.
Чтобы вычислить плотность какого-либо тела, нужно точно определить его массу и разделить её на точный объём этого тела.
кг/м 3
— Единицы измерения
плотности в международной
системе единиц (СИ)
г/см 3
— Единицы измерения
плотности в системе СГС
Выведем формулу вычисления плотности.
Для примера определим плотность бетона. Возьмём бетонный кубик весом 2,3 кг со стороной 10 см. Подсчитаем объём кубика.
Подставляем данные в формулу.
Бетонный куб со стороной 10 см
График зависимости плотности воды от температуры
От чего зависит плотность вещества
Плотность вещества меняется и при изменении его агрегатного состояния. Она скачкообразно растёт при переходе вещества из газообразного в жидкое состояние, и далее — в твёрдое. Здесь также есть исключения: плотность воды, висмута, кремния и некоторых других веществ снижается при затвердевании.
Чем измеряется плотность вещества
Для измерения плотности различных веществ применяются специальные приборы и приспособления. Так, плотность жидкостей и концентрация растворов измеряется различными ареометрами. Несколько разновидностей пикнометров предназначены для измерения плотности твёрдых тел, жидкостей и газов.
Металлический пикнометр
2. Оптическая плотность.
В физике оптической плотностью называют способность прозрачных материалов поглощать свет, а непрозрачных — отражать его. Это понятие в большинстве случаев характеризует степень ослабления светового излучения при прохождении его через слои и плёнки различных веществ.
Оптическую плотность принято выражать десятичным логарифмом отношения падающего на объект потока излучения к потоку, прошедшему через объект или отражённому от него:
Оптическая плотность=логарифм (поток излучения, падающий на объект где D – оптическая плотность; F0 – поток излучения, падающий на объект; F – поток излучения, прошедший через объект или отражённый от него).
В радиографическом методе контроля оптическая плотность является одним из основных параметров, определяющих пригодность снимков для их расшифровки. Допустимые значения этого параметра обусловлены требованиями ГОСТ 7512-82 (раздел 6 – расшифровка снимков).
Оптическая плотность измеряется в Беллах, сокращённое обозначение — «Б». Для измерения оптической плотности используется денситометр. Прибор сравнивает яркость негатоскопа и яркость точки на плёнке. По этим двум значениям прибор определяет оптическую плотность. Чем выше плотность, тем темнее изображение.
Денситометр ДП 5004
Оптическая плотность
Опти́ческая пло́тность — мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т.д.).
Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него), т. е. это есть логарифм от величины, обратной к коэффициенту пропускания (отражения).
К примеру D=4 означает, что свет был ослаблен в 10 4 =10 000 раз, т. е. для человека это полностью чёрный объект, а D=0 означает, что свет прошёл (отразился) полностью.
В терминах оптической плотности задаются требования к выдержке негативов.
Прибор для измерения оптической плотности называется денситометром. В рентгеновских методах неразрушающего контроля оптическая плотность рентгеновского снимка является параметром оценки пригодности снимка к дальнейшей расшифровке. Допустимые значения оптической плотности в рентгеновских методах неразрушающего контроля регламентируются в соответствии с требованиями ГОСТ.
Смотреть что такое «Оптическая плотность» в других словарях:
оптическая плотность — оптическая плотность: Мера почернения (окраски) фотографического слоя, равная десятичному логарифму обратной величины коэффициента пропускания или коэффициента отражения. Источник … Словарь-справочник терминов нормативно-технической документации
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — мера непрозрачности вещества, равная десятичному логарифму отношения потока излучения Fо, падающего на слой вещества, к потоку прошедшего излучения F, ослабленного в результате поглощения и рассеяния: D=lg(Fо/F). Оптическая плотность логарифм… … Большой Энциклопедический словарь
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — (D), мера непрозрачности слоя в ва толщиной l для световых лучей; характеризует ослабление оптического излучения в слоях разл. в в (красителях, светофильтрах, р рах, газах и т. п.). Для неотражающего слоя О. п. равна: D = lgI0/I=kll, где I… … Физическая энциклопедия
Оптическая плотность — мера непрозрачности к. л. среды (напр., бумаги, пленки, оттиска на бумаге, фотоотпечатка), равная десятичному логарифму отношения падающего на среду потока излучения к потоку, прошедшему через эту среду, или, что то же, логарифму величины,… … Издательский словарь-справочник
Оптическая плотность — степень пропускания света для прозрачных объектов и отражения для непрозрачных. В полиграфии используется для качественной оценки издательских оригиналов, промежуточных изображений (фотоформ) и оттисков … Реклама и полиграфия
ОПТИЧЕСКАЯ ПЛОТНОСТЬ — физ. характеристика и мера непрозрачности слоя вещества для прохождения световых лучей; равна десятичному логарифму отношения потока излучения (плоской монохроматической волны), падающего на слой вещества, к потоку прошедшего излучения,… … Большая политехническая энциклопедия
оптическая плотность — мера непрозрачности вещества, равная десятичному логарифму отношения потока излучения F0, падающего на слой вещества, к потоку прошедшего излучения F, ослабленного в результате поглощения и рассеяния: D = lg(F0/F). Оптическая плотность логарифм… … Энциклопедический словарь
оптическая плотность — optical dense оптическая плотность. Определяемая уровнем поглощения света количественная характристика раствора, которая, в соответствии с законом Бира Ламберта, прямо пропорциональна концентрации растворенного вещества, E=lgIo/I=kcb (где Io… … Молекулярная биология и генетика. Толковый словарь.
Оптическая плотность — 2.22. Оптическая плотность десятичный логарифм величины, обратной коэффициенту пропускания. Источник: Санитарные нормы и правила устройства и эксплуатации лазеров (утв. Главным государственным санитарным врачом СССР 31.07.1991 N 5804 91) … Официальная терминология
оптическая плотность — optinis tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Į sugeriančiąją sistemą kritusios ir per ją perėjusios šviesos intensyvumų dalmens dešimtainis logaritmas, t. y. D(λ) = –lg(τ(λ)); čia τ(λ) – spektrinis praleidimo… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Понятие об оптической плотности, светопропускании и светопоглощении.
Для характеристики поглощающей способности вещества используют такие величины как оптическая плотность, светопропускание, светопоглащение.
1. оптическая плотность(D) – десятичный логарифм отношения интенсивности света, падающего на образец (I0), к интенсивности света, выходящего из образца (I): D = lgIo/I;
Как и любая логарифмическая величина, оптич плотность не имеент размерности, измер-ся в ед-х оптич плотности.
2. коэф-т светопропускания (Т) или светопропускание – отношение интенсивности света, вышедшего из образца, к интенсивности света, падающего на образец: T = I/I o, измеряется в долях или процентах (T = I/I o ·100 %)
3. доля поглощения светового потока (б), или светопоглощение: б = (I o – I)/I o = 1 – T, измеряется в долях или процентах
55. Качественные и количественные показатели поглощения света. Закон Бугера-Ламберта-Бера, отклонения от него. Применение закона для определения концентрации вещества в растворе.
Поглощение света – это явление уменьшения интенсивности света при прохождении его через вещество. Уменьшение интенсивности света происходит в результате того, что энергия света переходит в другие виды энергии: энергию активизации, ионизации молекул, энергию теплового хаотического движения частиц в веществе и др. Для однородного твердого вещества поглощение света подчиняется закону Бугера: интенсивность света I при прохождении через вещество толщиной d уменьшается по экспоненциальному закону.Закон Бугера записывается
(I0 – интенсивность монохроматического пучка света, падающего на вещество; k – показатель поглощения, который зависит от природы вещества и длины волны падающего света)
При прохождении монохроматического света через окрашенные растворы небольшой концентрации (С ≤ 20%) и при условии, что растворитель не поглощает данную длину волны, интенсивность света также убывает по экспоненциальному закону. Закон поглощения света для окрашенных растворов называют законом Бугера-Ламберта-Бера:
(С – концентрация раствора; ɛ – показатель поглощения для раствора единичной концентрации, зависит от природы растворенного вещества и длины волны падающего света)
З-н Б-Л-Б выведен для достаточно разбавленных р-ов при использовании монохроматического света. Значительные отклонения от з-на мб обусловлены:
1. св-ми анализируемого образца – способностью молекул в-ва при больших конц-х образовывать агрегаты, что приводит к росту светорассеяния и кажущемуся повышению его оптич плотности.
2. конструкцией прибора: при использовании немонохроматического пучка света ( напр, при работе на фотоэлектроколориметрах), а также при работе в области, где погрешность прибора максимальна.
56. Молярный и удельный коэффициенты поглощения, их применение для определения концентрации веществ.
Спектр поглощения является индивидуальной характеристикой вещества, поэтому структурные особенности его находят отражение на спектрах поглощения. На основании изучения и интерпретации спектров поглощения можно проводить качественный и количественный анализ веществ.
57. Спектры поглощения биомолекул (на примере белков и НК). Хромофоры.
В молекулярной спектрометрии взаимодействие светового излучения с биомолекулами описывают с помощью спектров поглощения.
Спектр поглощения— зависимость оптической плотности/коэфициента экстинкции вещества от длины волны света, падающего на объект.
Полоса поглощения характеризуется параметрами:
1) max значение оптической плотности/молярным коэфициентом экстинкции.
2) длиной max поглощения
3) эффективной шириной полосы поглощения ⌂ƛ½, она соответсвует расстоянию между 2 точками полосы поглощения находящимися на высоте ½ Dmax данной полосы.
Спектральные св-ва белков.
Лиганд – соед, кот координирует с атомом метала. Кроме О2 в кач лиганда мог выступать др гр-пы. НbСО – карбоксигемоглобин.
Спектр-ые хар-ки НвО2
Полосы поглощ-ия до 300нм относят к глобину, после 300нм – к гемму.
В спектре поглощения НвО2 следует обратить внимание на – 275 и 412.
Пол. погл с мах 412 наз пол. Соре.
Пол. погл-ия гем-на с λмах = 275нм обусловл светопоглощ за счет π→π* разрыхляющ.
Речь идет об электронных переходах за счет ненасыщ связи в ароматических соединениях
ДНК – материальный субстрат наслед-ти, квази-кристал-ая молекула, упорядоченная. Спектр погл ДНК форм-ся за счет спектрал-х св-в нуклеотидов, а спектр погл нуклеотидов форм-ся за счет спектра погл азот оснований. В состав ДНК входят пурин-е и(А,Г) и пиримид-ые (Т, Ц,) азот основ-я.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
ЛЕКЦИЯ №8.
План лекции:
ОПТИЧЕСКИЕ СВОЙСТВА ДИСПЕРСНЫХ СИСТЕМ
Оптические свойства дисперсных систем обусловлены взаимодействием электромагнитного излучения, обладающего определенной энергией, с частицами дисперсной фазы. Особенности оптических свойств определяются природой частиц и их размерами, соотношением между длиной волны электромагнитного излучения и размерами частиц. Одним из наиболее характерных оптических свойств дисперсных систем является рассеяние света.
В зависимости от свойств частиц дисперсной фазы и их размеров свет, проходя через систему, может поглощаться, отражаться или рассеиваться. Последствия воздействия света на дисперсную систему определяются законами геометрической оптики.
Дисперсные системы способны к рассеянию света, если размеры частиц (а) намного меньше длины волны света ( l ).
Теорию рассеяния света развил английский физик Рэлей. Способностью рассеяния обладают не только частицы, но и ассоциаты молекул, макромолекулы. Рассеяние заключается в преобразовании света веществом, которое сопровождается изменением направления света и проявляется как несобственное свечение вещества.
СХЕМА РАССЕЯНИЯ СВЕТА
Падающий свет + Молекулы ¾ ® Поляризация молекул ¾ ® Возникновение диполей ¾ ® Излучение кванта света.
Световая волна вызывает поляризацию молекул, не проводящих и не поглощающих свет частиц, возникающий при этом дипольный момент определяется по уравнению:
Возникающие диполи являются источниками излучения света. В однородной среде свет, излучаемый диполями распространяется прямолинейно. В однородной среде, к которой относятся высокодисперсные частицы, свет рассеивается.
В результате рассеяния интенсивность падающего света ( I 0) изменяется и будет характеризоваться величиной I р, которая рассчитывается по формуле Рэлея:
Из этого уравнения следует, что интенсивность рассеянного света обратно пропорциональна длине волны в четвертой степени. Поэтому свет коротких волн рассеивается сильнее.
Красный свет имеет наибольшую в видимой части спектра длину волны (620-780 нм) и рассеивается в меньшей степени. Поэтому запрещающие сигналы светофора имеют красный цвет.
Длина волны фиолетового цвета 380-450 нм, он рассеивается гораздо интенсивнее красного. Не случайно во время войны для освещения затемненных объектов использовали синие лампочки, свет которых трудно заметить даже с небольшого расстояния.
Интенсивность рассеянного света зависит также от показателей преломления. Если показатель преломления вещества, из которого формируется дисперсная фаза, равен показателю преломления дисперсионной среды, то рассеяния не происходит.
Рассеяние света дисперсной системой, состоящей из множества частиц, отличается от рассеяния света одиночными частицами. В неоднородных средах световые волны под действием большого числа частиц меняют свое направление и не гасятся. Возникает дифракция света, то есть огибание световой волной частиц и нарушение прямолинейности распространения света. Такой вид рассеяния называется опалесценцией.
ОПТИЧЕСКАЯ ПЛОТНОСТЬ
По мере увеличения размеров частиц интенсивность рассеянного света перестает возрастать в зависимости от объемов частиц и рассеяние становится неравномерным.
Если размер частиц соизмерим с длиной волны, то основной причиной рассеяния света становится дифракция.
Взаимодействие света с веществом определяется законами геометрической оптики, если размеры частиц больше длины волны света. Особенности воздействия света на частицы относительно больших размеров обусловлены интерференцией отраженных и преломленных лучей на границе раздела между дисперсной фазой и дисперсионной средой.
Оптические свойства дисперсных систем, способных к поглощению света, можно характеризовать по изменению интенсивности света, прошедшего через эту систему. Интенсивность прошедшего света ( I пр) определяется на основе закона Ламберта-Бугера:
Для оценки соотношения интенсивности прошедшего и падающего света можно воспользоваться уравнением 8.2, из которого следует:
Э = l g ( I 0 / I пр ) = 0,43ка.
В отношении дисперсной системы экстинция может отражать не только поглощение, но и рассеяние света.
Коэффициент “к” зависит от массовой концентрации дисперсной фазы n М и может быть представлена следующим образом:
В реальных полидисперсных системах свойства частиц дисперсной фазы могут быть различны. Например, часть частиц будут рассеивать свет, а часть поглощать.
ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА
Оптические свойства дисперсных систем используют для определения размеров и концентрации частиц дисперсной фазы.
Нижний уровень частиц, ощущаемый глазом человека 10-20 мкм.
Точно определить размеры частиц можно с помощью оптического микроскопа.
С помощью ультрамикроскопа регистрируют не сами частицы, а рассеянный свет этих частиц. По яркости рассеянного света определяют размер частиц.
Нефелометрия позволяет определить размер частиц и их концентрацию. Метод основан на способности рассеивать свет согласно закону Рэлея. Принцип действия нефелометра основан на уравнивании интенсивностей рассеянного света исследуемой дисперсной системы и эталонного образца с известной концентрацией или размерами частиц.
УСТОЙЧИВОСТЬ ДИСПЕРСНЫХ СИСТЕМ
Устойчивость означает способность дисперсных систем сохранять свой состав неизменным.
Различают два вида устойчивости: седиментационную и агрегативную.
СЕДИМЕНТАЦИОННАЯ УСТОЙЧИВОСТЬ
Определяет способность противодействовать оседанию частиц. Седиментация или оседание приводит к разрушению систем. На частицу дисперсной фазы действует гравитационная сила Р, которой противодействует сила трения F тр, возникающая при движении частиц в дисперсионной среде. Кроме того, частицы испытывают воздействие молекул среды.
В условиях равновесия система характеризуется постоянством суммы химического m i и гравитационного Е i потенциалов.
R T l n n Ч 0 + М g Н0 = R Т l n n ч н + М g Н или
(8.5)
(8.6)
Уравнение представляет собой гипсометрический закон распределения численной концентрации по высоте. С учетом плотности дисперсионной среды вводится поправка:
(8.7)
Седиментационное равновесие нарушается, и частицы начинают оседать, когда их размер превышает 100 нм. В условиях постоянной скорости оседания устанавливается равновесие между гравитационной силой Р и силой трения:
Из формулы несложно определить радиус частицы:
(8.8)
Скорость и время оседания частиц различного размера неодинаково. Это лежит в основе седиментационного анализа.