Что называют определенным интегралом функции f x
Лекция 4. Определенный интеграл, его свойства и вычисление
Сайт: | Навчальний сайт ХНАДУ |
Курс: | Вища Математика (2 семестр) Вишневецький А.Л. |
Книга: | Лекция 4. Определенный интеграл, его свойства и вычисление |
Зміст
1. Понятие определенного интеграла
4) составим интегральную сумму функции y = f( x ) на отрезке [ a, b ]:
5) найдем предел интегральной суммы, когда λ → 0.
Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [ a, b ] на частичные отрезки, ни от выбора точек zi в них, то этот предел называется определенным интегралом от функции y = f( x ) на отрезке [ a, b ] и обозначается
В этом случае функция f( x ) называется интегрируемой на [ a, b ]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f( x ) – подынтегральной функцией, f( x ) dx – подынтегральным выражением, x – переменной интегрирования; отрезок [ a, b ] называется промежутком интегрирования.
Теорема 1. Если функция y = f( x ) непрерывна на отрезке [ a, b ], то она интегрируема на этом отрезке.
Определенный интеграл с одинаковыми пределами интегрирования равен нулю:
2. Геометрический смысл определенного интеграла
3. Основные свойства определенного интеграла
1. Значение определенного интеграла не зависит от обозначения переменной интегрирования:
2. Постоянный множитель можно выносить за знак определенного интеграла:
3. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:
4. Формула Ньютона–Лейбница
Теорема 2. Если функция y = f( x ) непрерывна на отрезке [ a, b ] и F(x) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:
где символ называется знаком двойной подстановки.
Таким образом, формулу (2) можно записать в виде:
Пример 1. Вычислить интеграл
Решение. Для подынтегральной функции f( x ) = x 2 произвольная первообразная имеет вид
Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид:
5. Замена переменной в определенном интеграле
Теорема 3. Пусть функция y = f( x ) непрерывна на отрезке [ a, b ]. Если:
1) функция x = φ ( t ) и ее производная φ ‘( t ) непрерывны при ;
2) множеством значений функции x = φ ( t ) при является отрезок [ a, b ];
которая называется формулой замены переменной в определенном интеграле.
В отличие от неопределенного интеграла, в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения φ ( t ) = a и φ ( t ) = b ).
Пример 2. Вычислить интеграл
6. Интегрирование по частям
Теорема 4. Пусть функции u = u( x ) и v = v( x ) имеют непрерывные производные на отрезке [ a, b ]. Тогда имеет место следующая формула интегрирования по частям:
Пример 3. Вычислить
Определенный интеграл Римана, Дарбу, Ньютона-Лейбница, виды интегрируемых функций
После обобщения выражения и определения получили, что любая непрерывная функция y = f ( x ) с числом I имеет отрезок, который и получил название определенного интеграла.
Его геометрическое понятие было показано в школе в 11 классе. Рассмотрим рисунок, приведенный ниже. Имеем изображение определенного интеграла.
В данной статье будет показано определения определенного интеграла, которые были заданы Риманом и Дарбу, Ньютоном-Лейбницом. Подробно будет показано условие интегрируемости функции на заданном определенном отрезке с перечислением интегрируемых функций.
Определенный интеграл Римана
Рассмотрим рисунок, приведенный ниже.
Числа a и b называют нижним и верхним пределом интегрирования, а f ( x ) – подынтегральная функция, где x – переменная интегрирования.
Определенный интеграл Дарбу
Чтобы понять необходимо и достаточное условие существования определенного интеграла Дарбу, необходимо применить несколько определений.
для разбиения отрезка [ a ; b ] называют нижней и верхней суммами Дарбу.
Рассмотрим рисунок, приведенный ниже.
Определенный интеграл Ньютона-Лейбница
Рассмотрим подробно понятие определенного интеграла Ньютона-Лейбница.
Необходимое условие интегрируемости функции на отрезке, виды интегрируемых функций
Рассмотрим необходимое условие существования определенного интеграла функции на отрезке.
Виды функций, для которых существует определенный интеграл:
Рассмотрим рисунок, приведенный ниже. На нем располагается пример интегрируемой функции.
Итоги
Задавание определенного интеграла Римана происходит через предел интегральных сумм, а интеграл Дарбу – предел разности верхних и нижних сумм Дарбу, в свою очередь интеграл Ньютона-Лейбница – при помощи значения первообразной.
Определённый интеграл и методы его вычисления
В каждой главе будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.
Понятие определённого интеграла и формула Ньютона-Лейбница
Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись
Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.
Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,
(38)
Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:
Поэтому формулу Ньютона-Лейбница будем записывать и так:
(39)
Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) = F(x) + C. Поэтому
Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.
При a = b по определению принимается
Для того чтобы потренироваться в нахождении определённых интегралов, потребуется таблица основных неопределённых интегралов и пособие «Действия со степенями и корнями«.
Пример 1. Вычислить определённый интеграл
Решение. Сначала найдём неопределённый интеграл:
Применяя формулу Ньютона-Лейбница к первообразной
Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).
Пример 2. Вычислить определённый интеграл
Решение. Используя формулу
Найти определённый интеграл самостоятельно, а затем посмотреть решение
Пример 3. Найти определённый интеграл
.
Пример 4. Найти определённый интеграл
.
Свойства определённого интеграла
Теорема 1. Определённый интеграл с одинаковыми пределами интегрирования равен нулю, т.е.
Это свойство содержится в самом определении определённого интеграла. Однако его можно получить и по формуле Ньютона-Лейбница:
Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования, т.е.
(40)
Пусть F(x) – первообразная для f(x). Для f(t) первообразной служит та же функция F(t), в которой лишь иначе обозначена независимая переменная. Следовательно,
На основании формулы (39) последнее равенство означает равенство интегралов
Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла, т.е.
(41)
Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций, т.е.
(42)
Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям, т.е. если
(43)
Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак, т.е.
(44)
Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его, т.е.
(45)
Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если
Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство
можно почленно интегрировать, т.е.
(46)
Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.
Пример 5. Вычислить определённый интеграл
Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим
Определённый интеграл с переменным верхним пределом
Пусть f(x) – непрерывная на отрезке [a, b] функция, а F(x) – её первообразная. Рассмотрим определённый интеграл
(47)
,
а через t обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х, которую обозначим через Ф(х), т.е.
(48)
Докажем, что функция Ф(х) является первообразной для f(x) = f(t). Действительно, дифференцируя Ф(х), получим
Функция Ф(х) – одна из бесконечного множества первообразных для f(x), а именно та, которая при x = aобращается в нуль. Это утверждение получается, если в равенстве (48) положить x = aи воспользоваться теоремой 1 предыдущего параграфа.
Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной
При выводе формулы интегрирования по частям было получено равенство u dv = d (uv) – v du. Проинтегрировав его в пределах от a до b и учитывая теорему 4 параграфа этой статьи о свойствах определённого интеграла, получим
Как это следует из теоремы 2 параграфа о свойствах неопределённого интеграла, первый член в правой части равен разности значений произведения uv при верхнем и нижнем пределах интегрирования. Записав эту разность кратко в виде
получаем формулу интегрирования по частям для вычисления определенного интеграла:
(49)
Пример 6. Вычислить определённый интеграл
Найти определённый интеграл по частям самостоятельно, а затем посмотреть решение
Пример 7. Найти определённый интеграл
.
Пример 8. Найти определённый интеграл
.
Перейдём к вычислению определённого интеграла методом замены переменной. Пусть
где, по определению, F(x) – первообразная для f(x). Если в подынтегральном выражении произвести замену переменной
то в соответствии с формулой (16) можно записать
первообразная функция для
принимает соответственно значения aи b, т.е.
Но, согласно формуле Ньютона-Лейбница, разность F(b) – F(a) есть
(50)
Это и есть формула перехода к новой переменной под знаком определённого интеграла. С её помощью определённый интеграл
после замены переменной
преобразуется в определённый интеграл относительно новой переменной t. При этом старые пределы интегрирования a и b заменяются новыми пределами и . Чтобы найти новые пределы, нужно в уравнение
поставить значения x = aи x = b, т.е. решить уравнения
относительно и . После нахождения новых пределов интегрирования вычисление определённого интеграла сводится к применению формулы Ньютона-Лейбница к интегралу от новой переменной t. В первообразной функции, которая получается в результате нахождения интеграла, возвращаться к старой переменной нет необходимости.
При вычислении определённого интеграла методом замены переменной часто бывает удобно выражать не старую переменную как функцию новой, а, наоборот, новую – как функцию старой.
Пример 9. Вычислить определённый интеграл
Решение. Произведём замену переменной, полагая
Найдём новые пределы интегрирования. Подстановка значений x = 4 и x = 5 в уравнение
Используя теперь формулу (50), получим
После замены переменной мы не возвращались к старой переменной, а применили формулу Ньютона-Лейбница к полученной первообразной.
Найти определённый интеграл заменой переменной самостоятельно, а затем посмотреть решение
Пример 10. Найти определённый интеграл
.
Пример 11. Найти определённый интеграл
.
Первообразная
Определение. Непрерывная функция F(x) называется первообразной функции f(x), если на промежутке X, если для каждого .
Операция нахождения первообразной функции f(x), называется интегрированием.
Неопределенный интеграл
Неопределённый интеграл-это совокупность всех первообразных функции f(x). В общем случае, нахождение неопределённого интеграла выглядит следующим образом:
,
где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования. Неопределённый интеграл представляет собой, как бы, «пучок» первообразных, из-за наличия постоянной интегрирования.
Дифференциал-произвольное, бесконечно малое приращение переменной величины.
Свойства неопределённого интеграла
Таблица основных неопределённых интегралов
В виде
,
где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования.
Определённый интеграл
Определенный интеграл— Приращение одной из первообразных функции f(x) на отрезке [a;b].
Общий вид определённого интеграла:
где f(x)–подынтегральная функция, a и b-пределы интегрирования, dx-дифференциал
Свойства определённого интеграла: см. св-ва определённого интеграла.
Определённый интеграл вычисляется по формуле Ньютона –Лейбница:
Применение определённого интеграла:
1. Нахождение площади криволинейной трапеции
2. Нахождение величины скорости v по заданному закону ускорения a(t) за промежуток времени [t1;t2], т.е
Пример: Точка движется по закону ускорения a(t)=t+1. Найти величину ее скорости за промежуток времени [2;4] секунд.
Решение:
3. Нахождение пути S по закону изменения скорости v(t) за промежуток времени [t1;t2], т.е.
Пример: Найти путь, который проделала материальная точка за промежуток времени [2;4], двигаясь со скоростью, которая изменялась по закону: v(t)=2t+2.
Решение:
Стоит отметить, что, на сегодняшний день, интегральное и дифференциальное исчисление занимают лидирующие позиции в математике. Советую вам ознакомиться, более подробно, с широким применением интегралов в естествознании.