Что называют направленным отрезком или вектором
Что такое вектор: определение, обозначение, виды
В данной публикации мы рассмотрим, что такое вектор, как он обозначается, а также какие виды бывают. Теоретическую информацию сопроводим рисунками для лучшего восприятия.
Определение вектора
Вектор – это направленный отрезок. Другими словами, это отрезок определенной длины, который направлен в конкретную сторону.
У вектора есть начало и конец. На рисунке ниже – это точки A и B, соответственно. Направление вектора показывается соответствующей стрелкой.
Примечание: нахождение длины вектора (| AB | или | a |) мы подробно рассмотрели в отдельной публикации.
Виды векторов
2. Единичный – вектор, длина которого равна единице. Также называется ортом.
3. Коллинеарные – векторы лежат на одной и той же или на параллельных прямых.
4. Сонаправленные – коллинеарные векторы, направления которых совпадает. Например, на рисунке ниже a и b являются сонаправленными.
5. Противоположно направленные – коллинеарные векторы, направления которых противоположны.
6. Компланарные – векторы, параллельные одной плоскости или лежащие на одной плоскости.
Примечание: любые два вектора компланарны, так как всегда найдется плоскость, параллельная им обоим.
7. Равные – векторы, имеющие одинаковую длину и направление, а также лежащие на одной или параллельных прямых.
Примечание: для вектора AB в произвольной точке C пространства удастся построить только один единственный вектор (например, CD ) той же длины.
Что называют направленным отрезком или вектором
1. Основные определения
Вектор представляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.
Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.
Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.
Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рис. 3 векторы `vec a`, `vec b` и `vec c` коллинеарны.
Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.
В физике точка приложения вектора иногда имеет принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется относительно другой со скоростью `vec v`, то какой точке приписать эту скорость? Всем точкам движущейся системы!
2. Сложение двух векторов.
Пусть даны два произвольных вектора `vec a` и `vec b` (рис. 5а).
Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать
Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют правило треугольника. Поясним сказанное.
3. Сложение трёх и более векторов.
Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d` (рис. 6).
Для этого по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим вектором `vec d`. Тогда полученный вектор `vec f = vec c + vec d` и будет представлять собой сумму трёх векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.
Так, на рис. 7 вектор `vec g` представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`, найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.
Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так, например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).
Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.
В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.
4. Умножение вектора на скаляр.
Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k
Определения направленного отрезка и вектора
Векторы на плоскости и в пространстве
Определение 1. Направленным отрезком называется упорядоченная пара точек (на плоскости или в трёхмерном пространстве).
Если даны две точки A и B (рассматриваемые именно в этом порядке), то соответствующий направленный отрезок будем обозначать (A, B). Отрезок (в обычном смысле), соединяющий точки A и B, будем обозначать AB. Я не исключаю случая, когда A = B (т. е. можно рассматривать направленный отрезок вида (A, A)). В этом случае отрезок AB превращается в точку. Упорядоченность пары означает, что направленные отрезки (A, B) и (B, A) считаются различными, если A ≠ B.
Определение 2. В направленном отрезке (A, B) точка A называется началом, а точка B − концом.
В направленном отрезке (A, A) начало совпадает с концом.
Определение 3. Направленный отрезок, начало которого совпадает с концом, называется нулевым направленным отрезком.
Определение 4. Если A ≠ B, то (единственную) прямую, проходящую через точки A и B, будем называть несущей прямой (направленного отрезка (A, B)).
В случае A = B несущая прямая не определена однозначно.
Определение 5. Два направленных отрезка (A, B) и (C, D) называются эквивалентными (обозначение: (A, B)
1. Их несущие прямые параллельны или совпадают.
2. Длины соответствующих отрезков равны (|AB| = |CD|).
3. Данные направленные отрезки сонаправленны.
Если хотя бы один из направленных отрезков нулевой, то надо опустить первый и третий пункты (можно считать, что они в этом случае всегда выполняются).
Для любителей математической строгости приведу другой вариант определения эквивалентности направленных отрезков, вполне равносильный первому[1]. Он не содержит интуитивного и трудно аксиоматизируемого понятия сонаправленности. Введём такое обозначение: если даны две точки A и B, то середину отрезка, соединяющего точки A и B, будем обозначать med AB (если точки A и B совпадают, то med AB = A)[2].
Определение 6. Два направленных отрезка (A, B) и (C, D) называются эквивалентными, если med AD = med BC.
Упражнение. Докажите эквивалентность (равносильность) этих двух определений.
Определение 7. Множество всех направленных отрезков, эквивалентных какому-нибудь одному, называется вектором.
Ясно, что все направленные отрезки из этого множества можно получить из данного с помощью сдвига, или параллельного переноса.
Векторы будем обозначать латинскими курсивными буквами со стрелками, например, . В печатных текстах принято другое обозначение − латинскими курсивными буквами, выделяемыми полужирным шрифтом (иногда тоже стрелками без выделения), например, a. (Я буду здесь так же выделять обозначение вектора полужирным шрифтом.) Если же надо обозначить вектор, соответствующий направленному отрезку (A, B) (т. е. множество всех направленных отрезков, ему эквивалентных), то пользуются другим обозначением: .
Предложение. Нулевой направленный отрезок эквивалентен другому направленному отрезку тогда и только тогда, когда второй отрезок также нулевой.
Доказательство. Это очевидное следствие любого из двух определений.
Определение 8. Множество всех направленных отрезков, эквивалентных какому-нибудь (а следовательно, и любому) нулевому, называется нулевым вектором и обозначается 0.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Векторы. Виды векторов
Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:
Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0.
Длина отрезка AB называется модулем ( длиной, нормой) вектора и обозначается | a|. Вектор длины, равной единице, называется единичным вектором. Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B. Вектор называется вектором, противоположным вектору .
Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными, если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными, если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.
Векторы называются компланарными, если они лежат на одной плоскости или в параллельных плоскостях.
В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:
Вектор, записанный в виде (1) называется вектор-строкой, а вектор, записанный в виде
Число n называется размерностью ( порядком) вектора. Если то вектор называется нулевым вектором (т.к. начальная точка вектора ). Два вектора x и y равны тогда и только тогда, когда равны их соответствующие элементы:
Сложение векторов
Суммой x+ y векторов x и y называется вектор, проведенный из начала x к концу у, если вектор у параллельно перемещен так, что конец x и начало y совмещены.
Умножение вектора на число
Произведением вектора x на число β ( x≠0, β≠0) называется вектор, модуль которого равен | x|| β| и который направлен в ту же сторону, что и вектор x, если β>0, и в противоположную, если β x=0 и (или) β=0, то βx=0.
Ортогональность векторов
Два вещественных вектора называются ортогональными, если они удовлетворяют соотношению
Вектор (Геометрические представления)
Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых — точка A — называется его началом, а вторая — B — его концом.
Содержание
Определение
Вектором в простейшем случае называется направленный отрезок, а в других случаях различные векторы — это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» итд). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.
Учитывая изоморфизм между множеством свободных векторов и множеством их параллельных переносов пространства, если операцию сложения отождествить с композицией переносов, можно использовать множество параллельных переносов пространства даже для определения вектора.
Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.
Свободные, скользящие и фиксированные векторы
Иногда, вместо того, чтобы рассматривать в качестве векторов множество всех равных направленных отрезков, берут только некоторую модификацию этого множества (фактормножество). Так, говорят о «свободных» (когда отождествляются все равные по длине и направлению направленные отрезки, считаясь полностью равными или одним и тем же вектором), «скользящих» (отождествляются между собой все направленные отрезки, равные в смысле свободных векторов, начала и концы которых расположены на одной прямой) и «фиксированных» векторах (по сути дела, просто о направленных отрезках, когда разное начало означает уже неравенство векторов).
Определение. Говорят, что свободные векторы и равны, если найдутся точки E и F такие, что четырёхугольники ABFE и CDFE — параллелограммы.
Определение. Говорят, что свободные векторы и , не лежащие на одной прямой, равны, если четырёхугольник ABDC — параллелограмм.
Определение. Говорят, что скользящие векторы и равны, если
Неформально говоря, скользящему вектору разрешено двигаться вдоль его прямой без изменения величины и направления.
Операции над векторами
Сложение векторов
Сложение двух свободных векторов можно осуществлять как по правилу параллелограмма, так и по правилу треугольника.
Правило треугольника. Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора.
Правило параллелограмма. Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.
Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Тогда каждый из векторов переносится вдоль своей прямой в точку пересечения этих прямых, после чего сложение осуществляется по правилу параллелограмма.
Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало. Их сложение в этом случае осуществляется по правилу параллелограмма.
Сложение коллинеарных скользящих векторов
Если скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В механике при изучении статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы и , расположенные на параллельных прямых. Добавим к ним векторы и , расположенные на одной прямой. Прямые, на которых расположены векторы и , и пересекаются. Поэтому определены векторы
Прямые, на которых расположены векторы и , пересекаются всегда, за исключением случая, когда векторы и равны по величине и противоположны по направлению, в котором говорят, что векторы и образуют пару (векторов).
Таким образом, под суммой векторов и можно понимать сумму векторов и , и эта сумма векторов определена корректно во всех случаях, когда векторы и не образуют пару.
Произведение вектора на число
Произведением вектора и числа λ называется вектор, обозначаемый (или ), модуль которого равен , а направление совпадает с направлением вектора , если , и противоположно ему, если . Если же , или вектор нулевой, тогда и только тогда произведение — нулевой вектор.
Из определения произведения вектора на число легко вывести следующие свойства:
Скалярное произведение
Скалярным произведением векторов и называют число, равное , где — угол между векторами и . Обозначения: или .
Если один из векторов является нулевым, то несмотря на то, что угол не определён, произведение равно нулю.
Свойства скалярного произведения векторов:
Геометрически скалярное произведение есть произведение длины одного из сомножителей на ортогональную проекцию другого на направление первого (или наоборот). Скалярное произведение какого-то вектора с единичным вектором есть ортогональная проекция вектора на направление единичного вектора.
Векторное произведение
Векторным произведением вектора a на вектор b называется вектор c, удовлетворяющий следующим требованиям:
Обозначение:
Геометрически векторное произведение есть ориентированная площадь параллелограмма, построенного на векторах , представленная псевдовектором, ортогональным этому параллелограмму.
Свойства векторного произведения:
Смешанное произведение
Сме́шанное произведе́ние векторов — скалярное произведение вектора на векторное произведение векторов и :
(равенство записано для разных обозначений скалярного и векторного произведения).
Иногда смешанное произведение называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).
Геометрически смешанное произведение есть (ориентированный) объем параллелепипеда, построенного на векторах .
Условие перпендикулярности векторов
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Пример
Условие коллинеарности векторов
Векторы являются коллинеарными тогда и только тогда, когда их векторное произведение равно нулю.
Пример
См. также
Ссылки
Полезное
Смотреть что такое «Вектор (Геометрические представления)» в других словарях:
система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации
Функциональный анализ (математ.) — Функциональный анализ, часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание методов… … Большая советская энциклопедия
Функциональный анализ — I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия
ПАТРИСТИКА — (лат. patres отцы) направление философско теологической мысли 2 8 вв., связанное с деятельностью раннехристианских авторов Отцов Церкви. Семантико аксиологические источники оформления П. античная философия (общерациональный метод и конкретное… … История Философии: Энциклопедия
АЛГЕБРА АБСТРАКТНАЯ — (общая алгебра), раздел современной математики, выросший из исследования уравнений и теории чисел. Свою теперешнюю форму абстрактная алгебра начала приобретать лишь в двадцатом веке. Занимается главным образом изучением систем, элементы которых… … Энциклопедия Кольера
ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… … Энциклопедия Кольера
Декарт, Рене — Запрос «Декарт» перенаправляется сюда; см. также другие значения. Рене Декарт René Descartes … Википедия
Декарт — Декарт, Рене Рене Декарт Дата рождения: 31 марта 1596(1596 03 31) … Википедия
Декарт Рене — Рене Декарт Дата и место рождения: 31 марта 1596 (Лаэ, Эндр и Луара, Франция) Дата и место смерти … Википедия
Декарт Р. — Рене Декарт Дата и место рождения: 31 марта 1596 (Лаэ, Эндр и Луара, Франция) Дата и место смерти … Википедия