Что называют мгновенной скоростью
Мгновенная и средняя скорость
Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.
Величина, которая характеризует быстроту изменения положения координаты, называется скоростью.
Мгновенная скорость точки. Формулы
Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.
Мгновенной скоростью называют предел, к которому стремится средняя скорость » open=» υ при стремлении промежутка времени ∆ t к 0 :
Имеющееся выражение υ = l i m ∆ t ∆ r ∆ t = d r d t = r ˙ в декартовых координатах идентично ниже предложенным уравнениям:
Перемещение и мгновенная скорость
Запись модуля вектора υ примет вид:
Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением d r = υ ( t ) d t
Решение
Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:
Решение
Вычислим уравнение мгновенной скорости, подставим числовые выражения:
Мгновенная скорость движения
Другими словами, мгновенная скорость – это первая производная радиус-вектора по времени.
Вектор мгновенной скорости всегда направлен по касательной к траектории тела в сторону движения тела.
Мгновенная скорость дает точную информацию о движении в определенный момент времени. Например, при езде в автомобиле в некоторый момент времени водитель смотрит на спидометр и видит, что прибор показывает 100 км/ч. Через некоторое время стрелка спидометра указывает на величину 90 км/ч, а еще спустя несколько минут – на величину 110 км/ч. Все перечисленные показания спидометра – это значения мгновенной скорости автомобиля в определенные моменты времени. Скорость в каждый момент времени и в каждой точке траектории необходимо знать при стыковке космических станций, при посадке самолетов и т.д.
Имеет ли понятие «мгновенной скорости» физический смысл? Скорость – это характеристика изменения перемещения тела в пространстве. Однако, для того, чтобы определить, как изменилось перемещение, необходимо наблюдать за движением в течение некоторого времени. Даже самые совершенные приборы для измерения скорости такие как радарные установки, измеряют скорость за промежуток времени – пусть достаточно малый , однако это все-таки конечный временной интервал, а не момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако, понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.
Примеры решения задач по теме «Мгновенная скорость»
Задание | О какой скорости – средней или мгновенной – идет речь в следующих случаях: |
1) самолет летит из Санкт-Петербурга в Москву со скоростью 800 км/ч;
2) пуля вылетает из винтовки со скоростью 800 м/с;
3) велосипедист едет по шоссе со скоростью 12 км/ч;
4) прибор показывает скорость тепловоза 75 км/ч?
2) и 4) – речь идет о мгновенной скорости.
Задание | Закон движения точки по прямой задается уравнением . Найти мгновенную скорость точки через 10 секунд после начала движения. |
Решение | Мгновенная скорость точки – это первая производная радиус-вектора по времени. Поэтому для мгновенной скорости можно записать: |
Через 10 секунд после начала движения мгновенная скорость будет иметь значение:
м/с
Задание | Тело движется по прямой так, что его координата (в метрах) изменяется по закону . Через сколько секунд после начала движения тело остановится? |
Решение | Найдем мгновенную скорость тела: |
В момент остановки мгновенная скорость тела будет равна нулю:
Мгновенная скорость
Ско́рость (часто обозначается , от англ. velocity или фр. vitesse ) — векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта. Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.
В науке повсеместно используется также скорость в широком смысле, то есть как скорость изменения какой-либо величины (не обязательно радиус-вектора). Так, например, говорят об угловой скорости, скорости роста температуры, скорости химической реакции и т. д. Математически находится с помощью производной от данной величины (обычно по времени, либо от другого аргумента).
Содержание
Скорость тела в механике
Вектор скорости материальной точки в каждый момент времени определяется производной по времени радиус-вектора этой точки:
Здесь v — модуль скорости, — направленный вдоль скорости единичный вектор касательной к траектории в точке .
Говорят, что тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).
В общем случае, скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса величина скорости точек на ободе относительно дороги принимает значения от нуля (в точке касания с дорогой) до удвоенного значения скорости автомобиля (в точке, диаметрально противоположной точке касания). Распределение скоростей в твёрдом теле определяется с помощью кинематической формулы Эйлера.
Если скорость тела (как векторная величина) не меняется во времени, то движение тела — равномерное (ускорение равно нулю).
Полезно отличать понятие средней скорости перемещения от понятия средней скорости пути, равной отношению пройденного точкой пути ко времени, за которое этот путь был пройден. В отличие от скорости перемещения, средняя скорость пути — скаляр.
Мгновенная и средняя скорость
Преобразование скорости
В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта S была равна , а скорость системы отсчёта S’ относительно системы отсчёта S равна , то скорость тела в при переходе в систему отсчёта S’ будет равна .
Для скоростей, близких к скорости света преобразования Галилея становятся несправедливы. При переходе из системы S в систему S’ необходимо использовать преобразования Лоренца для скоростей:
в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.
Единицы измерения скорости
Соотношение между единицами скорости
См. также
Полезное
Смотреть что такое «Мгновенная скорость» в других словарях:
мгновенная скорость — скорость; мгновенная скорость Скорость точки жидкости, рассматриваемая как векторная функция переменных Эйлера … Политехнический терминологический толковый словарь
мгновенная скорость — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN instantaneous speedinstantaneous velocity … Справочник технического переводчика
мгновенная скорость — akimirkinis greitis statusas T sritis automatika atitikmenys: angl. instantaneous speed vok. augenblickliche Geschwindigkeit, f; momentane Geschwindigkeit, f; Momentangeschwindigkeit, f rus. мгновенная скорость, f pranc. vitesse instantanée, f… … Automatikos terminų žodynas
мгновенная скорость — akimirkinis greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Greitis tam tikrą akimirką. atitikmenys: angl. instantaneous speed; instantaneous velocity vok. augenblickliche Geschwindigkeit, f; Momentangeschwindigkeit, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
мгновенная скорость — akimirkinis greitis statusas T sritis fizika atitikmenys: angl. instantaneous velocity vok. augenblickliche Geschwindigkeit, f; Momentangeschwindigkeit, f rus. мгновенная скорость, f pranc. vitesse instantanée, f … Fizikos terminų žodynas
МГНОВЕННАЯ СКОРОСТЬ РОСТА ПОПУЛЯЦИИ — скорость изменения числа организмов r в зависимости от времени в данный момент. Определяется по формуле: ║ где dN изменение числа организмов в данный момент времени dt; N число особей в популяции. См. также Мальтузианский параметр.… … Экологический словарь
мгновенная скорость фильтрования — Скорость фильтрования в данный момент времени. [ГОСТ 16887 71] Тематики фильтрование, центрифугирование, сепарирование … Справочник технического переводчика
мгновенная скорость ветра — 3.7 мгновенная скорость ветра: Скорость ветра в выделенной точке пространства скорость, которую имеет бесконечно малый объем воздуха, окружающий данную точку, характеризуется модулем и направлением. Источник: ГОСТ Р 54433 2011: Возобновляемая… … Словарь-справочник терминов нормативно-технической документации
Мгновенная скорость фильтрования — 57. Мгновенная скорость фильтрования Скорость фильтрования в данный момент времени Источник: ГОСТ 16887 71: Разделение жидких неоднородных систем методами фильтрования и центрифугирования. Термины и определения … Словарь-справочник терминов нормативно-технической документации
мгновенная скорость нагрева — Syn: мгновенная скорость нагревания … Металлургический словарь терминов
Мгновенная скорость
Вы будете перенаправлены на Автор24
Средняя скорость
Если тело перемещается неравномерно, то описывая его движение в качестве одного из параметров можно воспользоваться средней скоростью движения на отдельных отрезках пути. Но такое описание дает очень приближенную, грубую характеристику перемещения. Поскольку находя средние скорости, мы проводим замену неравномерного движения на движение с постоянной скоростью на избранных отрезках пути, думая, что скорость изменяется скачкообразно при переходе от одного отрезка времени к другому. Графиком пути, отражающем перемещение тела, с постоянной скоростью, отличающейся на разных временных отрезках, станет ломаная линия, имеющая звенья с различным наклоном.
Вектор перемещения нашей материальной точки определим как:
$\Delta \vec r=\vec r_2-\vec r_1(1).$
Средняя скорость материальной точки будет определена выражением:
Из формулы (2) видно, что в ней происходит деление вектора на скаляр, в результате мы имеем вектор, направление которого совпадает с направлением вектора перемещения.
Векторы скорости и перемещения обладают одинаковыми направлениями.
Переход от средней скорости к мгновенной скорости
Готовые работы на аналогичную тему
Устремим рассматриваемый промежуток времени к нулю (∆t→0), средняя скорость при этом устремится к предельному значению, которое называют мгновенной скоростью.
Мгновенной скоростью или скоростью в данный момент времени называют векторную величину, равную:
Если тело перемещается равномерно, то мгновенная скорость его движения в каждый момент времени совпадает со скоростью этого движения. Говорят, что мгновенная скорость равномерного движения является постоянной.
Мгновенная скорость неравномерного перемещения – это переменный параметр, который принимает разные значения для разных моментов времени. При этом мгновенную скорость можно считать изменяющейся непрерывно на всем отрезке времени, на котором рассматривается движение.
Мгновенную скорость в каждый момент времени можно определить как тангенс угла наклона касательной к кривой – траектории движения в рассматриваемой точке.
Компоненты вектора мгновенной скорости в декартовой системе координат
В декартовой системе координат радиус-вектор запишем как:
$\vec r(t)=x(t)\vec i+y(t)\vec j+z(t)\vec k (4)$,
принимая во внимание, что единичные орты ($\vec i ; \vec j; \vec k$) не изменяются во времени, и используя определение мгновенной скорости (3), получаем:
Из формулы (5) мы видим, что составляющие вектора скорости в декартовой системе координат задаются выражениями:
При этом величину мгновенной скорости можно найти как:
Направление мгновенной скорости
Получаем, что в определении мгновенной скорости (3) мы можем считать радиус – вектор как сложную функцию ($\vec r(s(t))$). При этом ее производную найдем, применяя правило дифференцирования сложной функции:
Принимая во внимание сказанное выше выражение (12) для мгновенной скорости можно записать как:
Из формулы (13) становится очевидно, что мгновенная скорость направлена по касательной к траектории движения материальной точки.
Рассматривая направления мгновенной скорости движения материальной точки подчеркнем, что:
Скорость при равнопеременном движении
Самым простым способом неравномерного движения является равнопеременное перемещение тела, движение с постоянным ускорением. Это движение бывает:
При равнопеременном движении скорость в любой момент времени можно вычислить, если использовать выражение:
$\vec v(t)=\vec v_0+\vec a \bullet t (14),$
Мгновенная скорость
Всего получено оценок: 211.
Всего получено оценок: 211.
Большинство движений в природе являются неравномерными. При описании таких движений большое значение имеет параметр «мгновенная скорость». Рассмотрим его подробнее.
Скорость при неравномерном движении
Скорость – величина, показывающая, какое расстояние проходит материальная точка за единицу времени:
Рис. 1. Скорость равномерного прямолинейного движения.
Однако, для определения положения материальной точки в любой момент времени, во многих случаях эту формулу применять нельзя.
В самом деле, если провести опыт, можно видеть, что на Земле предмет падает с высоты 20м за 2.02с. Откуда следует, что скорость падения составляет:
Выходит, что через полсекунды после начала падения предмет окажется на 5м ниже, чем исходная точка, через секунду – на 9.9м ниже.
Рис. 2. Стробоскопическое фото свободного падения.
Причина такого расхождения с расчетом состоит в том, что предмет под действием тяготения Земли движется неравномерно, постоянно изменяя скорость. И на каком бы участке мы не измерили его скорость – полученное значение будет различно, и его невозможно будет использовать в расчетах и уравнениях для других участков.
Свести неравномерное движение к равномерному невозможно.
Мгновенная скорость
Описанное затруднение можно разрешить, если учесть, что движение – процесс непрерывный. Ни координаты точки, ни ее скорость не могут изменяться скачками. Во время движения точка проходит все бесчисленное множество координат пути, на всем пути скорость ее непрерывно изменяется в некотором диапазоне, и при этом, чем меньше рассматриваемый отрезок времени, тем меньше будет изменение координаты и скорости.
Рассмотрим падение предмета, начиная с конца первой секунды. В этот момент координата будет равна 4.905м. Отметим новую координату падающего предмета через небольшое время, и вычислим скорость: