Что называют квадратным трехчленом
Квадратный трехчлен. Разложение квадратного трехчлена на множители
Квадратный трехчлен – это многочлен вида \(ax^2+bx+c\) (\(a≠0\)).
Примеры не квадратных трехчленов:
Корень квадратного трехчлена:
Значение переменной \(x\), при котором квадратный трехчлен обращается в ноль, называют его корнем.
Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)
Чтобы найти корни квадратного трехчлена нужно решить соответствующее квадратное уравнение.
Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).
Готово. Корень равен \(1\).
Разложение квадратного трёхчлена на множители:
Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.
Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.
Например, у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.
Пример. Разложите на множители \(2x^2-11x+12\).
Решение:
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)
Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).
Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac<-33-17><10>=-5\)
\(x_2=\frac<-33+17><10>=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ: \(-1,6\)
Что такое квадратный трехчлен: определение, формула, график, примеры
В данной публикации мы рассмотрим, что такое квадратный трехчлен, а также приведем его формулу и разберем алгоритм построения графика (параболы). Представленная информация сопровождается практическими примерами для лучшего восприятия.
Определение и формула квадратного трехчлена
Примеры:
График квадратного трехчлена
График имеет вершину:
Чтобы было понятнее, разберем алгоритм построения параболы на практических примерах.
Пример 1
Построим график квадратного трехчлена
Решение
Остается только найти, в какой точке график пересекает ось ординат (0y). Для этого в формулу трехчлена вместо x подставляем число 0:
y = (-0) 2 – 4 ⋅ 0 + 3 = 3
Теперь у нас есть все необходимые данные, чтобы построить график.
Примечание: Обратите внимание, что парабола – это симметричный график, т.е. если провести вертикальную линию через ее вершину, то правая часть будет зеркальным отражением левой (и наоборот).
Пример 2
Построим параболу трехчлена
Решение
Теперь находим, в какой точке график пересекает ось Oy, подставив в формулу вместо x число 0:
y = 3 ⋅ (0) 2 – 6 ⋅ 0 + 3 = 3
Значит, точка пересечения с осью ординат –
Строим параболу с учетом найденных точек:
Пример 3
А так выглядит график квадратичной функции
Квадратный трёхчлен и его применение к решению задач с параметрами
Разделы: Математика
Квадратный трехчлен и применение его к решению задач с параметром.
Квадратный трехчлен с полным правом можно назвать основной из функций, изучаемых в школьном курсе математики. Поэтому знание свойств квадратного трехчлена и умение применять их являются необходимыми условиями успешного выполнения ЕГЭ и вступительной экзаменационной работы.
Многочисленные задачи из совсем иных, на первый взгляд, областей математики (исследование экстремальных свойств функций, тригонометрические, логарифмические и показательные уравнения, системы уравнений и неравенств) зачастую сводятся к решению квадратных уравнений или исследованию квадратного трехчлена.
В данной работе рассмотрены теоремы о расположении корней квадратного трехчлена и показаны приемы решения задач на основе свойств квадратного трехчлена и графических изображений.
Понятие квадратного трехчлена и его свойства.
Квадратным трехчленом называется выражение вида ax 2 +bx+c, где a0. Графиком соответствующей квадратичной функции является парабола. При a 0 ветви направлены вверх.
Выражение x 2 +px+q называется приведенным квадратным трехчленом.
при D>0 существуют две различные точки пересечения параболы с осью Ох (два различных корня трехчлена);
при D=0 эти две точки сливаются в одну, то есть парабола касается оси Ох (один корень трехчлена);
при D 0 парабола лежит целиком выше оси Ох, при а 2 +bx+c и коэффициентами этого
Теорема, обратная теореме Виета, применяется лишь для приведенного квадратного трехчлена.
Теорема Виета успешно применяется при решении различных задач, в частности, задач на исследование знаков корней квадратного трехчлена. Это мощный инструмент решения многих задач с параметрами для квадратичной функции.
Теоремы о знаках корней квадратного трехчлена.
Теорема 1. Для того, чтобы корни квадратного трехчлена имели одинаковые знаки, необходимо и
При этом оба корня будут положительны, если дополнительно выполняется условие :
Расположение корней квадратного трехчлена (см. приложение).
Дидактический материал для учащихся.
6. При каких значениях параметра а уравнение 2х 2 +(3а+1)х+а 2 +а=2=0 имеет хотя бы один корень?
7. При каких значениях параметра а уравнение (а 2 +а+1)х 2 + (2а-3)х+а-5=0 имеет два корня, один из которых больше 1, а другой меньше 1?
13. При каких значениях параметра а уравнение х 2 +2(а+1)х+9=0 имеет два различных положительных корня?
Что называют квадратным трехчленом
Квадратный трехчлен. Разложение квадратного трехчлена на множители
Квадратным трехчленом называется многочлен вида ax 2 + bx + c, где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.
Коэффициент а называют старшим коэффициентом, c – свободным членом квадратного трехчлена.
Примеры квадратных трехчленов:
2x 2 + 5x + 4 (здесь a = 2, b = 5, c = 4)
Коэффициент b или коэффициент c либо оба коэффициента одновременно могут быть равны нулю. Например:
5x 2 + 3x (здесь a = 5, b = 3, c = 0, поэтому значение c в уравнении отсутствует).
2x 2 (здесь a = 2, b = 0, c = 0)
Значение переменной, при котором многочлен обращается в ноль, называют корнем многочлена.
Чтобы найти корни квадратного трехчлена ax 2 + bx + c, надо приравнять его к нулю –
то есть решить квадратное уравнение ax 2 + bx + c = 0 (см.раздел «Квадратное уравнение»).
Разложение квадратного трехчлена на множители
Трехчлен ax 2 + bx + c, имеющий корни x1 и x2, можно разложить на множители
по следующей формуле:
a(x – x1)(x – x2).
Разложим на множители трехчлен 2x 2 + 7x – 4.
Мы видим: коэффициент а = 2.
Теперь найдем корни трехчлена. Для этого приравняем его к нулю и решим уравнение
Как решается такое уравнение – см. в разделе «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу назовем результат вычислений. Наш трехчлен имеет два корня:
Подставим в нашу формулу значения корней, вынеся за скобки значение коэффициента а, и получим:
2x 2 + 7x – 4 = 2(x – 1/2) (x + 4).
Полученный результат можно записать иначе, умножив коэффициент 2 на двучлен x – 1/2:
2x 2 + 7x – 4 = (2x – 1) (x + 4).
Задача решена: трехчлен разложен на множители.
Такое разложение можно получить для любого квадратного трехчлена, имеющего корни.
ВНИМАНИЕ!
Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен имеет один корень, но при разложении трехчлена этот корень принимают как значение двух корней – то есть как одинаковое значение x1 и x2.
К примеру, трехчлен имеет один корень, равный 3. Тогда x1 = 3, x2 = 3.
Квадратный трехчлен и его корни
Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.
Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.
Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.
Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.
Как найти корни квадратного трехчлена
Для решения можно использовать один из известных способов.
Нахождение корней квадратного трехчлена по формуле.
2. В зависимости от значения дискриминанта вычислить корни по формулам:
Если D > 0, то квадратный трехчлен имеет два корня.
Если D 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;
Преобразуем это уравнение:
В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:
То, что в скобках можно представить в виде квадрата двучлена
В первом случае получаем ответ х=1, а во втором, х=-3.
В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.