Что называют косинусом угла а где 0 меньше а меньше 180
Презентация по теме :»Синус,косинус и тангенс угла», 9-й класс.
Содержимое разработки
Синус, косинус и тангенс для угла от 0° до 180°
Не стыдно чего-нибудь не знать, но стыдно не хотеть учиться. (Сократ)
Какую полуокружность называют единичной?
Радиус равен 1,центр в начале координат, расположена в 1 и 2 координатной четверти.
Что называют синусом угла α, где 0°≤α≤180°
Синусом угла называется ордината точки
Что называют косинусом угла α, где 0°≤α≤180°
Косинусом угла называется абсцисса точки
В каких пределах находится значение синуса, косинуса?
0 для острого угла Cos α» width=»640″
Каким числом положительным или отрицательным является косинус острого угла? тупого угла?
Каким числом положительным или отрицательным является синус острого угла? тупого угла?
Cos α 0 для острого угла
Какой формулой связаны синус и косинус одного и того же угла?
Основное тригонометрическое тождество
Что называют тангенсом угла α, где 0°≤α≤180 °
Тангенс – это отношение синуса к косинусу этого же угла(α≠90°)
Почему тангенс не определен для угла 90°?
х = cosα ≠ 0 значит α≠ 90°
Какое общее название имеют функции f(α) = sinα, g(α) = cosα, h(α) = tgα
Леонард Эйлер ввел и само понятие функции и принятую в наши дни символику.
Он придал всей тригонометрии ее современный вид.
В треугольнике АВС угол С равен 90°. ВС = 2
Презентация по геометрии «Синус, косинус и тангенс угла»
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Тема урока: «Синус, косинус и тангенс угла» Самый лучший 9а класс.
Какую полуокружность называют единичной? Радиус равен 1,центр в начале координат, расположена в 1 и 2 координатной четверти. M (x; y) C (0; 1) B (-1; 0) A(1; 0) x y 0 x y D h
Что называют синусом угла α, где 0° ≤ α ≤ 180°? Синусом угла называется ордината точки sin α = y Что называют косинусом угла α, где 0° ≤ α ≤ 180°? Косинусом угла называется абсцисса точки cos α = x
В каких пределах находится значение синуса, косинуса? 0 ≤ sin α ≤ 1 − 1 ≤ cos α ≤ 1 A C (0; 1) B (-1; 0) A(1; 0) x y 0 B
Что называют тангенсом угла α, где 0° ≤ α ≤ 180°? Тангенс – это отношение синуса к косинусу этого же угла(α ≠ 90°)
Какой формулой связаны синус и косинус одного и того же угла? Основное тригонометрическое тождество sin2α+ cos2α = 1 для любого из промежутка 0 ≤ ≤ 180
В треугольнике ABC угол C равен 90°, AC = 6, AB = 10. Найдите sin B. Ответ: 0,6
В треугольнике ABC угол C равен 90°, BC = 8, AB =10. Найдите cos B. Ответ: 0,8
В треугольнике ABC угол C равен 90°, BC = 4, AC = 28. Найдите tg B. Ответ: 7
Тригонометрическая таблица 00 300 450 600 900 1200 1350 1500 1800 sin cos tg
A (x; y) x y O M (cos α; sin α) Формулы для вычисления координат точки А (x; y) – произвольная точка М (сos α; sin α) x = ОА ∙ cos y = OA ∙ sin α
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1038777
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Во Франции планируют ввести уголовное наказание за буллинг в школе
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Более 50 российских школ перешли на дистанционку из-за коронавируса
Время чтения: 1 минута
ВПР для школьников в 2022 году пройдут весной
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Учителям истории предлагают предоставить право бесплатно посещать музеи
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Теорема косинусов и синусов
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Формулировка и доказательство теоремы косинусов
Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Формула Теоремы Пифагора:
a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.
К полученному выражению прибавим и отнимем квадрат второго катета:
Но так как b = c * cos α, то
Эту формулу мы получили для катетов в прямоугольном треугольнике, но аналогичная связь между стороной а и косинусом противолежащего угла справедлива и для произвольного треугольника.
Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.
Формула теоремы косинусов:
В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:
В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).
cos 2 α + sin 2 α = 1 — основное тригонометрическое тождество.
Что и требовалось доказать.
Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.
Следствие из теоремы косинусов: теорему косинусов также можно использовать для определения косинуса угла треугольника:
Сформулируем еще одно доказательство теоремы косинусов.
Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:
Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
Приравниваем правые части уравнений:
Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.
Определим стороны b и c:
Формулировка теоремы для каждой из сторон треугольника
Теорема косинусов справедлива для всех сторон треугольника, то есть:
Таким образом, теорема косинусов обобщает теорему Пифагора. Закон косинуса может быть использован для любого вида треугольника.
Описание формулы косинуса угла из теоремы косинусов
Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:
Определение угла с помощью косинуса
А теперь обратим внимание на углы.
Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).
Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.
Рассмотрение пределов изменения cos α и sin α
Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.
Примеры решения задач
При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.
Пример 1. Дан треугольник АВС. Найти длину СМ.
∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Синус и косинус угла на единичной окружности
Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:
С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что
ВС = АВ•sinα = 5•0,8 = 4
Если известно, что cosα = 0,6, то мы сможем найти и второй катет:
АС = АВ•cosα = 5•0,6 = 3
Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:
tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)
Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:
Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:
Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле
Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда
АВ = sinα•ОА = sinα•1 = sinα
С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или
Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:
Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:
хА = ОВ = cosα•ОА = cosα•1 = cosα
то есть координата хА равна cos α:
Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.
Таким образом, нам удалось дать новое определение синусу и косинусу угла:
Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть
Тригонометрические формулы (стр. 1 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 |
Глава 4. Тригонометрические формулы
В этой главе изучаются формулы для синусов, косинусов, тангенсов и котангенсов любых углов. Сначала обобщается известное из геометрии понятие угла, вводятся градусная и радианная меры угла, даётся определение синуса, косинуса, тангенса и котангенса произвольного угла; изучаются их основные свойства.
В дополнении приводятся формулы для синусов и косинусов суммы и разности двух углов и формулы для суммы, разности и произведения синусов и косинусов.
Цель изучения главы 4: понять, что такое угол в тригонометрии, что такое синус, косинус, тангенс и котангенс любого угла.
Следует отметить, что материал этой главы перенесён из 9 класса в 10 класс и не входит в итоговый контроль (ГИА), но по традиции он изучается в классах с углублённым изучением математики.
Авторы считают, что даже беглое изучение этого материала в обычных классах расширит кругозор учащихся, даст им пример «другой» алгебры, в которой скобки в выражении sin (x + y) «раскрываются» совсем не так, как кажется некоторым учащимся. Кроме того, такое предварительное изучение тригонометрии позволит повысить эффективность её изучения в 10 классе.
§ 9(8). Угол и его мера
Основная цель изучения девятого параграфа — усвоить понятие угла — как поворота подвижного вектора, освоить градусную и радианную меры любого угла, научиться переводить величины углов из однй меры в другую. В этом параграфе сначала вводится понятие угла поворота, затем изучаются его градусная и радианная меры.
9.2.(8.2) Градусная мера угла
В пункте 9.1 вводятся понятия подвижного вектора, полного оборота, положительных и отрицательных углов, нулевого угла. Если в геометрии рассматривались неотрицательные углы меньшие развёрнутого, то теперь рассматриваются также углы большие развёрнутого и отрицательные.
В пункте 9.2 вводится понятие градусной меры угла. Говорят, что градусная мера угла равна 1 градусу (1°), если подвижный угол совершил поворот, равный полного оборота. Утверждается, что для любого действительного числа существует, и притом единственный угол, градусная мера которого равна этому числу .
Далее приведены примеры построения углов, имеющих ту или иную градусную меру. Здесь удобно использовать окружность единичного радиуса, которая в п. 9.3 будет названа единичной окружностью. Учащимся надо показать приём построения «табличных» углов (30°, 45°, 60°, 90°) и связанных с ними углов без транспортира, что позволит в дальнейшем быстрее находить значения синусов, косинусов, тангенсов и котангенсов углов, сводимых к их значениям для «табличных» углов.
Покажем, как это можно сделать. Учащиеся должны сначала научиться отмечать на единичной окружности точки, соответствующие:
а) углам 0°, 90°, 180°, 270° (точки лежат на пересечении осей координат с единичной окружностью) (рис. 41, а);
б) углам 45°, 135°, 225°, 315° (точки лежат на пересечении биссектрис координатных углов с единичной окружностью) (рис. 41, б);
в) углам 30°, 150°, 210°, 330° (точки лежат на пересечении прямых y = и y = – с единичной окружностью) (рис. 41, в);
г) углам 60°, 120°, 240°, 300° (точки лежат на пересечении прямых x = и x = – с единичной окружностью) (рис. 41, г).
Умея строить указанные точки, легко построить соответствующие им углы и тем самым выполнить задание 526. При этом нужно отметить требуемые углы дугами (как на рисунках в учебнике) или, обозначив построенные точки буквами, сделать поясняющие записи в виде AOB = 90° (рис. 41, а).
Чтобы обосновать, что точка B, изображенная на рисунке 41 (в) соответствует углу 30°, достаточно опустить из этой точки перпендикуляр ВС на ось Ox (рис. 41, д). Тогда в прямоугольном треугольнике BOC катет ВС равен половине гипотенузы ОB, поэтому угол СOB, лежащий против этого катета, равен 30°. Аналогично даётся обоснование для рисунка 41 (г).
Решения и комментарии
527(773). Укажите несколько положительных и отрицательных углов, образованных такими поворотами, при каждом из которых угол между начальным и конечным положением подвижного вектора равен 30°, –45°, 60°, –90°.
Решение. 1) 30°, 30° + 360° = 390°, 30° – 360° = –330°, 30° + 360° = 750°,
30° – 360° = –690°.
2) –45°, –45° + 360° = 315°, –45° – 360° = –405°, –45° + 360° = 675°,
–45° – 360° = –765°.
3) 60°, 60° + 360° = 420°, 60° – 360° = –300°, 60° + 360° = 780°,
60° – 360° = –660°.
4) –90°, –90° + 360° = 270°, –90° – 360° = –450°, –90° + 360° = 630°,
–90° – 360° = –810°.
528(774). Укажите наименьший по абсолютной величине угол среди данных углов:
д) 400° + 360°, где п Z; е) –700° + 360°, где п Z.
Решение. д) При n = –1 имеем 400° + 360° = 40°. При увеличении или уменьшении числа n абсолютная величина угла увеличивается.
е) При n = 2 имеем –700° + 360° = 20°. При увеличении или уменьшении числа n абсолютная величина угла увеличивается.
529(775). Представьте следующие углы в виде + 3600×n, где 00 0, а cos 120° cos 120°.
з) Так как на единичной окружности точки и – = совпадают, то cos = cos = –, sin = –1 и –> –1, поэтому cos >
> sin .
Промежуточный контроль. С–23*.
10.2. Основные формулы для sinα и cosα
В данном пункте с опорой на ранее изученные факты — уравнение окружности, свойства координат точек единичной окружности, симметричных относительно оси Ox, относительно начала координат — доказаны основное тригонометрическое тождество
sin2 + cos2 = 1 (1)
sin (–) = –sin , (2)
cos (–) = cos , (3)
sin ( + 2k) = sin , k Z, (4)
cos ( + 2k) = cos , k Z, (5)
sin ( + ) = –sin , (6)
cos (+) = –cos . (7)
Некоторые другие формулы, например, sin ( – ) = sin , cos ( – ) =
= –cos , могут быть доказаны как следствия формул (2) – (7) (задание 586).
sin ( – ) = sin (+ (–)) = –sin(–) = sin .
Это умение проверяется в самостоятельной работе С–24. Кроме того, там проверяется умение школьников находить значения одной из заданных функций (sin или cos ) по заданному значению другой и выполнять упрощения выражений с применением формул (1) – (7).
Решения и комментарии
568(814). Существует ли такой угол , для которого:
а) sin = –1, cos = ; в) sin = , cos = ;
Решение. а) Так как sin2 + cos2 = 1 + > 1, то такой угол не существует.
в) Так как sin2 + cos2 = + = 1, то такой угол существует.
569(815). Возможно ли равенство:
а) sin = –; б) cos = – 1;
Решение. а) Так как |sin | = > 1, то такое равенство не возможно.