Смотреть что такое «Химического строения теория» в других словарях:
Химического строения теория — Александр Михайлович Бутлеров Дата рождения: 3 (15) сентября 1828(18280915) Место рождения: Чистополь, Казанская губерния, Российская империя Дата смерти: 5 (17) августа 1886 … Википедия
ХИМИЧЕСКОГО СТРОЕНИЯ ТЕОРИЯ — теория, описывающая строения органич. соед. Разработана А. М. Бутлеровым в 1861. Основные положения теории: 1) атомы в молекулах соединяются между собой в определённом порядке в соответствии с их валентностями, что определяет хим. строение… … Естествознание. Энциклопедический словарь
ХИМИЧЕСКОГО СТРОЕНИЯ ТЕОРИЯ — выдающееся открытие в химической науке, сделанное русским ученым А. М. Бутлеровым. Источник: Энциклопедия Русская цивилизация … Русская история
Теория резонанса — Резонансные структуры бензола Теория резонанса теория электронного строения химических соединений, в соответствие с которой распределение электронов в молекулах (в том числе сложных ионах или радикалах), является комбинацией (резонансом)… … Википедия
Резонанса теория — (в химии) концепция, дополняющая постулаты классической теории химического строения и утверждающая, что если для данного соединения классическая теория (см. Химического строения теория) допускает построение нескольких приемлемых… … Большая советская энциклопедия
Типов теория — I Типов теория в химии, одна из ведущих химических теорий середины 19 в. В 1839 1840 Ж. Б. Дюма предложил рассматривать химические соединения как продукты замещения одних элементов или радикалов (см. Радикалов теория) другими в немногих… … Большая советская энциклопедия
Радикалов теория — одна из ведущих химических теорий 1 й половины 19 в. В её основе лежат представления А. Л. Лавуазье об исключительно важном значении кислорода в химии и о дуалистическом (двойственном) составе химических соединений. В 1789… … Большая советская энциклопедия
резонанса теория — в химии, концепция, дополняющая постулаты классической теории химического строения и утверждающая, что, если для данного соединения классическая теория допускает построение нескольких приемлемых структурных формул, то действительному состоянию… … Энциклопедический словарь
Типов теория (в химии) — Типов теория в химии, одна из ведущих химических теорий середины 19 в. В 1839 1840 Ж. Б. Дюма предложил рассматривать химические соединения как продукты замещения одних элементов или радикалов (см. Радикалов теория) другими в немногих «типичных»… … Большая советская энциклопедия
создатель теории химического строения, родоначальник «бутлеровской школы»
Содержание
Биография
Адреса в Санкт-Петербурге
Научный вклад
Основные идеи теории химического строения Бутлеров впервые высказал в 1861. Главные положения своей теории он изложил в докладе «О химическом строении вещества», прочитанном в химической секции Съезда немецких естествоиспытателей и врачей в Шпейере (сентябрь 1861). Основы этой теории сформулированы таким образом:
С этим постулатом прямо или косвенно связаны и все остальные положения классической теории химического строения. Бутлеров намечает путь для определения химического строения и формулирует правила, которыми можно при этом руководствоваться. Предпочтение он отдаёт синтетическим реакциям, проводимым в условиях, когда радикалы, в них участвующие, сохраняют своё химическое строение. Однако Бутлеров предвидит и возможность перегруппировок, полагая, что впоследствии «общие законы» будут выведены и для этих случаев. Оставляя открытым вопрос о предпочтительном виде формул химического строения, Бутлеров высказывался об их смысле: «… когда сделаются известными общие законы зависимости химических свойств тел от их химического строения, то подобная формула будет выражением всех этих свойств» (там же, с. 73-74).
Бутлеров впервые объяснил явление изомерии тем, что изомеры — это соединения, обладающие одинаковым элементарным составом, но различным химическим строением. В свою очередь, зависимость свойств изомеров и вообще органических соединений от их химического строения объясняется существованием в них передающегося вдоль связей «взаимного влияния атомов», в результате которого атомы в зависимости от их структурного окружения приобретают различное «химическое значение». Самим Бутлеровым и особенно его учениками В. В. Марковниковым и А. Н. Поповым это общее положение было конкретизировано в виде многочисленных «правил». Уже в XX в. эти правила, как и вся концепция взаимного влияния атомов, получили электронную интерпретацию.
Большое значение для становления теории химического строения имело её экспериментальное подтверждение в работах как самого Бутлерова, так и его школы. Он предвидел, а затем и доказал существование позиционной и скелетной изомерии. Получив третичный бутиловый спирт, он сумел расшифровать его строение и доказал (совместно с учениками) наличие у него изомеров. В 1864 Бутлеров предсказал существование двух бутанов и трёх пентанов, а позднее и изобутилена. Чтобы провести идеи теории химического строения через всю органическую химию, Бутлеров издал в 1864-1866 в Казани 3 выпусками «Введение к полному изучению органической химии», 2-е изд. которого вышло в 1867-1868 на немецком языке.
Бутлеров впервые начал на основе теории химического строения систематическое исследование полимеризации, продолженное в России его последователями и увенчавшееся открытием С. В. Лебедевым промышленного способа получения синтетического каучука.
Педагогическая деятельность
Огромная заслуга Бутлерова — создание первой русской школы химиков. Ещё при его жизни ученики Бутлерова по Казанскому университету В. В. Марковников, А. Н. Попов, А. М. Зайцев заняли профессорские кафедры в университетах. Из учеников Бутлерова по Петербургскому университету наиболее известны А. Е. Фаворский, М. Д. Львов и И. Л. Кондаков. В разное время в бутлеровской лаборатории работали практикантами Е. Е. Вагнер, Д. П. Коновалов, Ф. М. Флавицкий, А.И. Базаров, А. А. Каракау и др. видные русские химики. Отличительной чертой Бутлерова как руководителя было то, что он учил примером — студенты всегда могли сами наблюдать, над чем и как работает профессор.
Общественная деятельность
Много сил отнимала у Бутлерова борьба за признание Академией наук заслуг русских учёных. В 1882 в связи с академическими выборами Бутлеров обратился непосредственно к общественному мнению, опубликовав в московской газете «Русь» обличительную статью «Русская или только Императорская Академия наук в Санкт-Петербурге?».
Бутлеров был поборником высшего образования для женщин, участвовал в организации Высших женских курсов в 1878, создал химические лаборатории этих курсов. В Казани и Петербурге Бутлеров прочитал много популярных лекций, главным образом на химико-технические темы.
Кроме химии, Бутлеров много внимания уделял практическим вопросам сельского хозяйства, садоводству, пчеловодству, а позднее также и разведению чая на Кавказе. Был основателем и, первое время, главным редактором «Русского Пчеловодного Листка». С конца 1860-х гг. проявлял интерес к медиумизму — спиритизму.
Память о Бутлерове была увековечена только при Советской власти монументом (открыт в 1953) перед зданием химического факультета МГУ; было осуществлено академическое издание его трудов.
Теория строения органических соединений. Типы связей в молекулах органических веществ
Теория к заданию 12 из ЕГЭ по химии
Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах
Теория химического строения органических соединений А. М. Бутлерова
Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.
Основным постулатом теории Бутлерова является положение о химическом строении вещества, под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.
Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.
Основные положения теории А. М. Бутлерова
Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.
Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.
Органические вещества имеют ряд особенностей:
Изомерия и гомология органических веществ
Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.
Изомерия — это явление существования разных веществ — изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.
Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.
Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).
Структурная изомерия
Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:
Изомерами являются углеводород, относящийся к алкинам, — бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:
Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.
Пространственная изомерия
Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс-положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:
Геометрические изомеры различаются по физическим и химическим свойствам.
Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов — биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.
Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.
Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.
Типы связей в молекулах органических веществ.
Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.
Характеристики одинарных и кратных связей между атомами С.
Молекула
Тип гибридизации
Валентный угол
Длина связи, нм
Энергия связи, кДж/моль
$CH_3-CH_3$
$sp^3$
$109°5’$
$0.154$
$369$
$CH_2=CH_2$
$sp^2$
$120°$
$0.134$
$712$
$CH≡CH$
$sp^3$
$180°$
$0.120$
$962$
Радикал. Функциональная группа.
Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом, если же она имеет атомы других элементов, то она называется функциональной группой. Так, например, метил ($СН_3$—) и этил ($С_2Н_5$—) являются углеводородными радикалами, а оксигруппа (—$ОН$), альдегидная группа (), нитрогруппа (—$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.
Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.
Химическое соединение — У этого термина существуют и другие значения, см. Соединение (значения). Стереоскопическое изображение химического соединения … Википедия
химическое строение — cheminė sandara statusas T sritis fizika atitikmenys: angl. chemical structure vok. chemische Konstitution, f; chemische Struktur, f rus. химическое строение, n pranc. composition chimique, f; constitution chimique, f … Fizikos terminų žodynas
Химическое строение — Настоящая статья имеет задачей изложение истории возникновения теории X. строения органических соединений и ее связи с предыдущими теориями. В значительной мере это уже выяснено в статьях Замещение, Унитарная система, Химических типов теория и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Строение органических веществ — см. Химическое строение … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
химическое соединение — [compound, combination] сложное вещество, состоящее из химической связи атомов разных элементов. Некоторые простые вещества также можно рассматривать как химическое соединение, если их молекулы состоят из атомов, соединенных ковалентной связью… … Энциклопедический словарь по металлургии
Соединение химическое — сложное вещество, состоящее из химически связанных атомов двух или нескольких различных элементов. Некоторые простые вещества также могут рассматриваться как С. х., если их молекулы состоят из атомов, соединённых ковалентной связью… … Большая советская энциклопедия
Химия — Первоначальное значение и происхождение этого слова неизвестно; возможно, что оно просто старое название северного Египта, и тогда наука Chemi значит египетская наука; но так как Chemi, кроме Египта, обозначало еще черный цвет, a μελάνοσις… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Кофеин — Кофеин … Википедия
Матеин — Структурная формула кофеина C8H10N4O2 Кофеин алкалоид (пурин №7 caffeine), вызывающий привыкание и содержащийся в таких растениях, как кофейное дерево, чай (кофеин, содержащийся в чае или экстрагированный из него, иногда называют теин), мате… … Википедия
Пример. Вода состоит из атомов водорода и кислорода в отношении 2:1. Графит и алмаз состоят из атомов углерода.
Атомы могут входить в состав веществ в незаряженном состоянии или в виде заряженных атомов (ионов).
Пример. Атомы аргона входят в состав аргона незаряженными, а атомы хлора и натрия в составе поваренной соли образуют ионы.
В состав многих веществ входят (и имеют очень важное значение для их свойств) свободные электроны.
Пример. В составе металлов электроны являются носителями заряда, а в составе особых ионных соединений (они называются электриды) электроны играют роль отрицательных ионов.
Строение веществ
В некоторых веществах соседние атомы объединены друг с другом в частицы, называемые молекулами. Связи между атомами в одной и той же молекуле гораздо прочнее, чем связи между атомами, входящими в соседние молекулы, поэтому молекулы способны к самостоятельному существованию при переходе вещества в различные агрегатные состояния и в растворах.
Пример. Вода, лёд, водяной пар состоят из молекул, а в графите, алмазе, аргоне молекул нет.
Все вещества состоят из атомов, но по своему строению все вещества делятся на вещества молекулярного и немолекулярного строения.
Общее название частиц, участвующих в строении вещества — структурные частицы. К структурным частицам относятся: молекулы, атомы, ионы, электроны.
Вещества молекулярного строения называются молекулярными веществами, а немолекулярного — немолекулярными веществами.
Молекулярные вещества — это вещества, мельчайшими структурными частицами которых являются молекулы.
Немолекулярные вещества — это вещества, мельчайшими структурными частицами которых являются атомы, ионы, электроны.
Пример: поваренная соль, перманганат калия (марганцовка) — немолекулярные вещества (состоят из ионов). Алмаз, аргон — немолекулярные вещества (состоят из атомов). Алюминий, медь — немолекулярные вещества (металлы) — состоят из положительных ионов и свободных электронов.