Что называют единицей физической величины метрология

Система физических величин и их единиц

Основные понятия и определения метрологии

Метрология – наука об измерениях, методах и средствах обес­печения их единства и способах достижения требуемой точности.

Современная метрология включает три составляющие: законода­тельную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию. Из прикладной метрологии для нужд ма­шиностроения выделяют технические измерения. В настоящее время к техническим измерениям, рассматриваемым во взаимной связи с точ­ностью и взаимозаменяемостью в машиностроении, относят измерения линейных, угловых и радиусных величин. Результаты измерений выра­жают в узаконенных величинах.

Цели и задачи метрологии:

– создание общей теории измерений;

– образование единиц физических величин и систем единиц;

– разработка и стандартизация методов и средств измерений, методов определения точности измерений, основ обеспечения единства измерений и единообразия средств измерений (так называемая «законодательная метрология»);

– создание эталонов и образцовых средств измерений, поверка мер и средств измерений. Приоритетной подзадачей данного направления является выработка системы эталонов на основе физических констант.

Под измерением понимают познавательный процесс, заключа­ющийся в сравнении путем физического эксперимента данной физической величины с известной физической величиной, при­нятой за единицу измерения.

РМГ 29–99 (рекомендации по межгосударственной стандартизации) трактует физическую величину как одно из свойств физического объекта, в качественном отношении общее для мно­гих физических объектов, а в количественном – индивидуальное для каждого из них.

Физические величины– это измеренные свойства физических объектов и процессов, с помощью которых они могут быть изу­чены.

Свойство – то, что характеризует какую либо сторону предмета (объекта) и что выявляется во взаимоотношении данного предмета (объекта) с другими предметами (объектами) или явлениями. Каждый предмет (объект) имеет множество различных свойств, совокупность которых составляет его качество.

Каждая физическая величина имеет свои качественную и количественную характеристики. Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство «прочность» в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное. Для выражения количественного содержания свойства конкретного объекта употребляется понятие «размер физической величины». Этот размер устанавливается в процессе измерения.

По условиям, определяющим точность результата, измерения делят на три класса:

– измерения максимально возможной точности, достижимой при
существующем уровне техники;

– контрольно-поверочные измерения, выполняемые с заданной
точностью;

– технические измерения, погрешность которых определяется метрологическими характеристиками средств измерений.

Технические измерения определяют класс измерений, выпол­няемых в производственных и эксплуатационных условиях, когда точность измерения определяется непосредственно средствами измерения.

Единство измерений – состояние измерений, при котором результаты выражены в узаконенных единицах и погрешности известны с заданной вероятностью. Единство измерений необходимо для того, чтобы можно было сопоставить результаты измерений, выполненных в разное время, с использованием различных методов и средств измерений, а также в различных по территориальному расположению местах.

Единство измерений обеспечивается их свойствами:

– сходимостью результатов измерений;

– воспроизводимостью результатов измерений;

– правильностью результатов измерений.

Сходимость – это близость результатов измерений, получен­ных одним и тем же методом, идентичными средствами измерений, и близость к нулю случайной погрешности измерений.

Воспроизводимостьрезультатов измерений характеризуется бли­зостью результатов измерений, полученных различными средства­ми измерений (естественно одной и той же точности) различны­ми методами.

Правильностьрезультатов измерений определяется правильно­стью как самих методик измерений, так и правильностью их ис­пользования в процессе измерений, а также близостью к нулю систематической погрешности измерений.

Точность измерений характеризует качество измерений, отража­ющее близость их результатов к истинному значению измеряемой величины, т.е. близость к нулю погрешности измерений.

Процесс решения любой задачи измерения включает в себя, как правило, три этапа: подготовку, проведение измерения (экс­перимента) и обработку результатов. В процессе проведения само­го измерения объект измерения и средство измерения приводятся во взаимодействие.

Средство измерения – техническое устройство, используемое при измерениях и имеющее нормированные метрологические ха­рактеристики.

Результат измерения – значение физической величины, най­денное путем ее измерения. В процессе измерения на средство из­мерения, оператора и объект измерения воздействуют различные внешние факторы, именуемые влияющими физическими величи­нами.

Эти физические величины не измеряются средствами измере­ния, но оказывают влияние на результаты измерения. Несовер­шенство изготовления средств измерений, неточность их градуировки, внешние факторы (температура окружающей среды, влаж­ность воздуха, вибрации и др.), субъективные ошибки оператора и многие другие факторы, относящиеся к влияющим физическим величинам, являются неизбежными причинами появления погреш­ности измерения.

Мерой точности измерения является погрешность измерения.

Погрешность измерения – отклонение результата измерения от истинного значения измеряемой величины.

Под истинным значением физической величины понимается значение, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующие свойства измеряемого объекта.

Основные постулаты метрологии: истинное значение определенной величины существует и оно постоянно; истинное значение измеряемой величины отыскать невозможно. Отсюда следует, что результат измерения математически связан с измеряемой величиной вероятностной зависимостью.

Поскольку истинное значение есть идеальное значение, то в качестве наиболее близкого к нему используют действительное значение.

Действительное значение физической величины – это значение физической величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что может быть использовано вместо него.

На практике в качестве дей­ствительного значения принимается среднее арифметическое зна­чение измеряемой величины.

Рассмотрев понятие об измерениях, следует различать и род­ственные термины: контроль, испытание и диагностирование.

Контроль – частный случай измерения, проводимый с целью установления соответствия измеряемой величины заданным пре­делам.

Испытание – воспроизведение в заданной последовательности определенных воздействий, измерение параметров испытуемого объекта и их регистрация.

Диагностирование – процесс распознавания состояния элемен­тов объекта в данный момент времени. По результатам измерений, выполняемых для параметров, изменяющихся в процессе эксплу­атации, можно прогнозировать состояние объекта для дальней­шей эксплуатации.

Метод измерений – прием или совокупность приемов сравне­ния измеряемой физической величины с ее единицей в соответ­ствии с реализованным принципом измерения.

Технический контроль (ТК) – проверка соответствия объек­та (детали, сборочной единицы, механизма, машины) установленному техническому условию (ТУ).

Система физических величин и их единиц

Совокупность физических величин в соответствии с приняты­ми принципами, когда одни величины принимаются за независи­мые, а другие являются их функциями, называется системой фи­зических величин. Физические величины делят на основные и про­изводные.

В качестве основных физических величин (семь основных величин) используются длина (L), масса (М), время (Т), сила электрического тока (I), термодинамическая температура(Q), количество вещества (N), сила света (J). Основные единицы обозначаются символами, происходящими от их названия (см. табл. 2.1).

Совокупность основных и производных единиц физических ве­личин, образованную в соответствии с принятыми принципами, называют системой единиц физических величин. В Российской Федерации используется система единиц СИ (система интернациональ­ная), введенная ГОСТ 8.417–81. Эта международная система СИ используемая в большинстве стран мира, была принята на XI Генеральной конференции по мерам и весам в 1960 г.

В качестве основных единиц приняты метр, килограмм, секунда, ампер, кельвин, моль и кандела, которые приведены в табл. 2.1.

Производная единица – это единица производной физической величины системы единиц, образованная в соответствии с урав­нениями, связывающими ее с основными единицами или с ос­новными и уже определенными производными (табл. 2.2).

Различают кратные и долевые единицы физических величин (табл. 2.3).

Кратная (долевая) единица – единица физической величины, в целое число раз превышающая (уменьшающая) системную или внесистемную адиницу.

Основные единицы физических величин системы СИ

ВеличинаЕдиница измерения
НаименованиеРазмер- ностьРекомендуемое обозначениеНаимено- ваниеОбозначение
рус- скоемежду- народное
ДлинаLlметрмm
МассаVmкилограммкгkg
ВремяTtсекундасs
Сила электричес- кого токаIIамперАA
Термодинамиче- ская температураQTкельвинКK
Количество веществаNn, υмольмольmol
Сила светаJJканделакдcd

Основные понятия, связанные со средствами измерений (СИ)

Средством измерения (СИ) называется техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.

Производные единицы системы СИ, имеющие специальные названия

Средства измерения классифицируют по следующим признакам:

– по конструктивному исполнению;

По конструктивному исполнению СИ подразделяются на: меры, измерительные приборы, измерительные преобразователи, измерительные установки, измерительные системы.

Мера– это средство измерения, предназначенное для воспроизведения физической величины заданного размера. Например: гиря – мера массы, резистор – мера электрического сопротивления.

Измерительный прибор – средство измерения, предназначенное для получения значений измеряемой физической величины в установленном диапазоне (рН-метры, весы, фото-электроколориметры и т. д.).

Измерительный преобразователь – это средство измерения, предназначенное для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения, но недоступной для непосредственного восприятия наблюдателем (термопара, частотный преобразователь).

Измерительные преобразователи могут быть первичными, к которым подведена измеряемая величина, и промежуточными, которые располагаются в измерительной цепи за первичными. Примерами первичных измерительных преобразователей являются термопары, датчики.

Под измерительной установкой понимают совокупность средств измерений (мер, измерительных приборов, преобразователей) и вспомогательных устройств для выработки сигналов информации в форме, удобной для восприятия и расположенных в одном месте (испытательный стенд).

Измерительная система – это совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, размещенных в разных точках контролируемого пространства с целью измерения одной или нескольких физических величин, свойственных этому пространству (контролирующие, управляющие системы с ЭВМ).

По метрологическому назначению СИ подразделяются на рабочие и метрологические.

Рабочие средства измерения предназначены непосредственно для измерений в различных сферах деятельности, а именно в науке, технике, в производстве, медицине, то есть там, где необходимо получить значение той или иной физической величины.

Метрологическое средство измерения предназначено для метрологических целей: воспроизведения единицы и её хранения или передачи размера единицы рабочим СИ. К ним относятся эталоны, образцовые СИ, поверочные установки, стандартные образцы.

По уровню стандартизации различают стандартизованные и нестандартизованнные средства измерения.

Стандартизованнымисчитаются средства измерения, изготовленные в соответствии с требованиями государственного стандарта и соответствующие техническим характеристикам установленного типа средств измерения, полученным на основании государственных испытаний, и внесенные в Государственный реестр СИ.

Нестандартизованные – уникальные средства измерения, предназначенные для специальной измерительной задачи, в стандартизации требований к которым нет необходимости. Они не подвергаются государственным испытаниям, а подлежат метрологической аттестации.

Метрологическое средство измерения чаще именуется «эталон».

Чтобы обеспечить единство измерений, необходима тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Для этого применяют средства измерений, хранящие и воспроизводящие установленные единицы физических величин и передающие их соответствующим средствам измерений. Высшим звеном в метрологической передаче размеров единиц являются эталоны.

Эталон единицы – средство измерений (или комплекс средств), обеспечивающее воспроизведение и (или) хранение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненное по особой спецификации и официально утвержденное в установленном порядке в качестве эталона.

Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью, называется первичным.

Специальный эталон воспроизводит единицу в особых условиях и заменяет при этих условия первичный эталон.

Первичный или специальный эталон, официально утвержденный в качестве исходного для страны, называется государственным.

В метрологической практике широко используют вторичные эталоны, значения которых устанавливается по первичным эталонам. Вторичные эталоны являются частью подчиненных средств хранения единиц и передачи их размера. Они создаются и утверждаются в тех случаях, когда это необходимо для обеспечения наименьшего износа государственного эталона.

Вторичные эталоны по своему назначению делятся на эталоны-копии, эталоны сравнения, эталоны-свидетели и рабочие эталоны.

Эталон-копия предназначен для передачи размеров единиц рабочим эталонам. Он не всегда является физической копией государственного эталона.

Эталон-свидетель предназначен для проверки сохранности государственного эталона и для замены его в случае порчи или утраты.

Эталон сравнения применяют для сличения эталонов, которые по тем или иным причинам не могут быть непосредственно сличаемы друг с другом (например, так называемый нормальный элемент, используемый для сличения государственного эталона Вольта с эталоном Вольта Международного бюро мер и весов).

Рабочий эталон применяют для передачи размера единицы образцовым средствам измерений высшей точности, а в отдельных случаях – наиболее точным средствам измерений.

Образцовое средство измерения – мера, измерительный прибор или измерительный преобразователь, служащие для поверки по ним других средств измерений и утвержденные в качестве образцовых.

Поверка средств измерений – определение метрологическим органом погрешности средств измерений и установления его пригодности к применению.

Образцовые средства измерений могут иметь разные разряды. Между ними существует соподчиненность: образцовые средства измерений первого разряда поверяют, как правило, непосредственно по рабочим эталонам, образцовые средства измерений второго и последующих разрядов подлежат поверке по образцовым средствам измерений непосредственно предшествующих разрядов. Для разных видов измерений устанавливается, исходя из требований практики, различное число разрядов образцовых средств измерений.

Рабочее средство измерений применяют для измерений, не связанных с передачей размеров единиц.

Средство измерений – техническое средство, имеющее нормированные метрологические характеристики. Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками. Перечень важнейших из них регламентируется ГОСТ «Нормируемые метрологические характеристики средств измерений». Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации, посредством отдельных средств измерений или совокупности средств измерений, например, автоматических измерительных систем.

Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования (иначе называемая функцией преобразования или градуировочной характеристикой). Она устанавливает зависимость y = f(x) информативного параметра у выходного сигнала измерительного преобразователя от информативного параметра х входного сигнала. Если статическая характеристика преобразования линейна, т.е. у = Кх, то коэффициент К называется чувствительностью измерительного прибора (преобразователя).

Важной характеристикой шкальных измерительных приборов является цена деления, т.е. то изменение измеряемой величины, которому соответствует перемещение указателя на одно деление шкалы. Если чувствительность постоянна в каждой точке диапазона измерения, то шкала называется равномерной. При неравномерной шкале нормируется наименьшая цена деления шкалы измерительных приборов. У цифровых приборов шкалы в явном виде нет, и на них вместо цены деления указывается цена единицы младшего разряда числа в показании прибора.

Важнейшей метрологической характеристикой средств измерений является погрешность.

Под абсолютной погрешностью меры понимается алгебраическая разность между ее номинальным Хн и действительным Хд значениями:

а под абсолютной погрешностью измерительного прибора – разность между его показанием Хп и действительным значением Хд измеряемой величины:

Однако в большей степени точность средства измерений характеризует относительная погрешность, т.е. выраженное в процентах отношение абсолютной погрешности к действительному значению измеряемой или воспроизводимой данным средством измерений величины:

Источник

Физическая величина как объект метрологии

Объектом метрологии являются физические величины. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты — объекты познания — выделяет некоторое ограниченное количество свойств, общих для ряда объектов в качественном отношении, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин. Понятие «физическая величина» в метрологии, как и в физике, физическая величина трактуется как свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т.е. как свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте — размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.

Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. Объективно существующие зависимости между физическими величинами представляют рядом независимых уравнений. Число уравнений т всегда меньше числа величин п. Поэтому т величин данной системы определяют через другие величины, а я величин — независимо от других. Последние величины принято называть основными физическими величинами, а остальные — производными физическими величинами.

Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовали унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.

Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).

В 1954 г. X Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI— начальные буквы французского наименования Systeme International di Unites). Был утвержден перечень шести основных, двух дополнительных и первый список 27 производных единиц, а также приставки для образования кратных и дольных единиц.

В России действует ГОСТ 8.417—2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные, либо русские обозначения (но не те и другие одновременно).

Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в табл. 9.1.

Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.

Метр равен длине пути, проходимого светом в вакууме за

/299792458 Д° лю СеКуНДЫ.

Килограмм равен массе международного прототипа килограмма.

Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2-10- 7 Н.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Таблица 9.1 Основные единицы СИ

Что называют единицей физической величины метрология

Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения v = l/t.

При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ — метр в секунду — это скорость прямолинейно и равномерно движущейся точки, при которой она за время t перемещается на расстояние 1 м.

Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

В табл. 9.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

Таблица 9.2 Образование десятичных кратных и дольных единиц измерения

Что называют единицей физической величины метрология

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в системе СИ присвоены собственные названия.

Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазоне, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т.д.). Квантованная величина имеет в заданном диапазоне только счетное множество размеров. Примером такой величины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Размеры квантованной величины могут соответствовать только определенным уровням — уровням квантования. Разность двух соседних уровней квантования называют ступенью квантования (квантом). Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины делят на активные и пассивные. Активные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации. Пассивные величины (например, масса, элек-тоическое сопротивление, индуктивность) сами не могут

создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен протекать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физической величины. Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепринятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *