Что называется внутренним трением
ВНУТРЕННЕЕ ТРЕНИЕ
Полезное
Смотреть что такое «ВНУТРЕННЕЕ ТРЕНИЕ» в других словарях:
ВНУТРЕННЕЕ ТРЕНИЕ — 1) свойство твердых тел необратимо поглощать механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, напр., в затухании свободных колебаний.2) В жидкостях и газах то же, что вязкость … Большой Энциклопедический словарь
ВНУТРЕННЕЕ ТРЕНИЕ — ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость … Современная энциклопедия
ВНУТРЕННЕЕ ТРЕНИЕ — син. термина вязкость. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
внутреннее трение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN IFinternal frictionviscosity … Справочник технического переводчика
Внутреннее трение — ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость. … Иллюстрированный энциклопедический словарь
внутреннее трение — 1) свойство твердых тел необратимо превращать в теплоту механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, например, в затухании свободных колебаний. 2) В жидкостях и газах то же, что вязкость. * * *… … Энциклопедический словарь
Внутреннее трение — I Внутреннее трение в газах и жидкостях; то же, что Вязкость. II Внутреннее трение в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механическую энергию, сообщенную телу в процессе его деформирования. В. т.… … Большая советская энциклопедия
внутреннее трение — vidinė trintis statusas T sritis Standartizacija ir metrologija apibrėžtis Trintis tarp dviejų judančios medžiagos sluoksnių. atitikmenys: angl. internal friction vok. innere Reibung, f rus. внутреннее трение, n pranc. frottement interne, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Внутреннее трение
Полезное
Смотреть что такое «Внутреннее трение» в других словарях:
ВНУТРЕННЕЕ ТРЕНИЕ — 1) свойство твердых тел необратимо поглощать механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, напр., в затухании свободных колебаний.2) В жидкостях и газах то же, что вязкость … Большой Энциклопедический словарь
ВНУТРЕННЕЕ ТРЕНИЕ — ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость … Современная энциклопедия
ВНУТРЕННЕЕ ТРЕНИЕ — в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механич. энергию, сообщённую телу в процессе его деформирования. В. т. связана с двумя разл. группами явлений неупругостью и пластич. деформацией. Неупругость представляет… … Физическая энциклопедия
ВНУТРЕННЕЕ ТРЕНИЕ — син. термина вязкость. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
внутреннее трение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN IFinternal frictionviscosity … Справочник технического переводчика
Внутреннее трение — ВНУТРЕННЕЕ ТРЕНИЕ, то же, что вязкость. … Иллюстрированный энциклопедический словарь
внутреннее трение — 1) свойство твердых тел необратимо превращать в теплоту механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, например, в затухании свободных колебаний. 2) В жидкостях и газах то же, что вязкость. * * *… … Энциклопедический словарь
внутреннее трение — vidinė trintis statusas T sritis Standartizacija ir metrologija apibrėžtis Trintis tarp dviejų judančios medžiagos sluoksnių. atitikmenys: angl. internal friction vok. innere Reibung, f rus. внутреннее трение, n pranc. frottement interne, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
ВЯЗКОСТЬ (ВНУТРЕННЕЕ ТРЕНИЕ).
F = h|Dv/Dх|S, (17.2.)
где коэффициент h, зависящий от природы жидкости, называют динамической вязкостью. Вязкость зависит от температуры. Этот закон вязкого течения был установлен И. Ньютоном.
Вязкость (внутреннее трение) — это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявляется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.
Сила внутреннего трения F тем больше, чем больше рассматриваемая площадь поверхности слоя S (рис. ), и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою. На рисунке представлены два слоя, отстоящие друг от друга на расстоянии Dx и движущиеся со скоростями v1 и v2. При этом v1—v2=Dv. Направление, в котором отсчитывается расстояние между слоями, перпендикулярно скорости течения слоев. Величина (Δv/Δх) показывает, как быстро меняется скорость при переходе от слоя к слою в направлении х, перпендикулярном направлению движения слоев, и называется градиентом скорости.
Единица вязкости — паскаль-секунда (Па×с): 1 Па×с равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1 м, возникает сила внутреннего трения 1 Н на 1 м 2 поверхности касания слоев (1 Па×с= 1 Н×с/м 2 ).
Рис. 106.
Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей hс увеличением температуры уменьшается, у газов, наоборот, увеличивается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Например, вязкость касторового масла в интервале
18—40°С падает в четыре раза. Российский физик П. Л. Капица (1894—1984; Нобелевская премия 1978 г.) открыл, что при температуре 2,17 К жидкий гелий переходит в сверхтекучее состояние, в котором его вязкость равна нулю.
Существует два режима течения жидкостей. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).
Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы.
При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.
Рис. 107.
Профиль усредненной скорости при турбулентном течении в трубах (рис. ) отличается от параболического профиля при ламинарном течении более быстрым возрастанием скорости у стенок трубы и меньшей кривизной в центральной части течения. Характер течения зависит от безразмерной величины, называемойчислом Рейнольдса (О. Рейнольдс (1842—1912) — английский ученый): Re = (ρ‹v›d)/η = (‹v›d)/ν.где n = h/p—кинематическая вязкость; р—плотность жидкости; —средняя по сечению трубы скорость жидкости; d — характерный линейный размер, например диаметр трубы. При малых значениях числа Рейнольдса Re ≤1000 наблюдается ламинарное течение, переход от ламинарного течения к турбулентному происходит в области 1000 ≤ R ≤1000,а при Re = 2300 (для гладких труб) течение—турбулентное. Если число Рейнольдса одинаково, то режим течения различных жидкостей (газов) в трубах разных сечений одинаков.
Работа внешней силы F, уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту. В трубе скорость жидкости равна нулю около стенок и меняется к центру по закону v =v0 (1 – r 2 /R 2 ). На единицу поверхности (цилиндрической) действует сила трения Fтр.=η(dv/dr)=η(2v0r/R 2 ). Средняя скорость ламинарного течения жидкости в трубе равна v0=- R 2 /8η grad(p), (17.3)
где grad(ρ) = (p2 – p1). (Закон Пуазейля). (17.4)
А объем жидкости, протекающей в трубе, равен:
Наряду с динамической вязкостью h часто рассматривают так называемую кинематическую вязкость n = h/r, (17.6.)
где r— плотность жидкости или газа. Единицами кинематической вязкости служат, соответственно м 2 /сек.Для вязкости идеальных газов в молекулярно-кинетической теории даётся следующее соотношение: η = (1/3) mnuλ, (17.7.)
где m — масса молекулы, n— число молекул в единице объёма, u— средняя скорость молекул и l— длина свободного пробега молекулы между двумя соударениями её с другими молекулами. Так как u возрастает с повышением температуры Т (несколько возрастает также и l), то вязкость газов увеличивается при нагревании (пропорционально √T).
17,3. Метод определения вязкости Стокса.
Внутреннее трение (в твёрдых телах)
При упругом деформировании сплава с равномерным распределением атомов различных компонентов может произойти перераспределение атомов в веществе, связанное с различием их размеров. Восстановление равновесного распределения атомов путём диффузии также представляет собой релаксационный процесс. Проявлениями неупругих, или релаксационных, свойств, кроме упомянутых, являются упругое последействие в чистых металлах и сплавах, упругий гистерезис и др.
В качестве методов измерения В. т. применяются: изучение затухания свободных колебаний (продольных, поперечных, крутильных, изгибных); изучение резонансной кривой для вынужденных колебаний ; относительное рассеяние упругой энергии за один период колебаний. Изучение В. т. твёрдых тел представляет собой новую быстро развивающуюся область физики твёрдого тела, является источником важных сведений о процессах, возникающих в твёрдых телах, в частности в чистых металлах и сплавах, подвергнутых различным механическим и тепловым обработкам.
Лит.: Новик А. С., Внутреннее трение в металлах, в кн.: Успехи физики металлов. Сб. статей, пер. с англ., ч. 1, М., 1956; Постников В. С., Релаксационные явления в металлах и сплавах, подвергнутых деформированию, «Успехи физических наук», 1954, т. 53, в. 1, с. 87; его же, Температурная зависимость внутреннего трения чистых металлов и сплавов, там же, 1958, т. 66, в. 1, с. 43.
Полезное
Смотреть что такое «Внутреннее трение (в твёрдых телах)» в других словарях:
ВНУТРЕННЕЕ ТРЕНИЕ — в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механич. энергию, сообщённую телу в процессе его деформирования. В. т. связана с двумя разл. группами явлений неупругостью и пластич. деформацией. Неупругость представляет… … Физическая энциклопедия
Внутреннее трение — I Внутреннее трение в газах и жидкостях; то же, что Вязкость. II Внутреннее трение в твёрдых телах, свойство твёрдых тел необратимо превращать в теплоту механическую энергию, сообщенную телу в процессе его деформирования. В. т.… … Большая советская энциклопедия
Трение внутреннее — совокупность различных процессов внутри твёрдого тела (а также в жидкостях и газах), приводящих к необратимому рассеянию механической энергии при деформации, связанному с преобразованием механической энергии в тепловую (см. Внутреннее… … Большая советская энциклопедия
Вязкость — внутреннее трение, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В. твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно (см. Внутреннее … Большая советская энциклопедия
Твёрдое тело — одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости (См. Жидкость), Газов, плазмы (См. Плазма)) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около… … Большая советская энциклопедия
Кинетика физическая — теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика… … Большая советская энциклопедия
Земля — (Earth) Планета Земля Строение Земли, эволюция жизни на Земле, животный и растительный мир, Земля в солнечной системе Содержание Содержание Раздел 1. Общая о планете земля. Раздел 2. Земля как планета. Раздел 3. Строение Земли. Раздел 4.… … Энциклопедия инвестора
Земля (планета) — Земля (от общеславянского зем пол, низ), третья по порядку от Солнца планета Солнечной системы, астрономический знак Å или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в… … Большая советская энциклопедия
Земля — I Земля (от общеславянского зем пол, низ) третья по порядку от Солнца планета Солнечной системы, астрономический знак ⊕ или, ♀. I. Введение З. занимает пятое место по размеру и массе среди больших планет, но из планет т … Большая советская энциклопедия
Коэффициент внутреннего трения или вязкость жидкости
Параметр вязкости выступает одним из основных свойств определяющих характер движения жидкости.
Если текущая жидкость соприкасается с неподвижной поверхностью (например при движении жидкости в трубке) то слой такой жидкости перемещается с различными скоростями. В результате между этими слоями возникает напряжение сдвига: более быстрый слой стремится вытянуться в продольном направлении, а более медленный задерживает его.
Наличие вязкости приводит к рассеиванию (диссипации) энергии внешнего источника, вызывающего движение жидкости, и переходу ее в теплоту. Жидкость без вязкости (так называемая идеальная жидкость) является абстракцией. Всем реальным жидкостям присуща вязкость.
(9.1)
Таким образом сила внутреннего трения тормозит более быстрые слои и ускоряет более медленные слои. Наряду с коэффициентом динамической вязкости рассматривают так называемый коэффициент кинематической вязкости
Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.
Ньютоновской называется жидкость, коэффициент вязкости которой зависит только от ее природы и температуры. Для ньютоновских жидкостей сила вязкости прямо пропорциональна градиенту скорости. Для них непосредственно справедлива формула Ньютона (9.1), коэффициент вязкости в которой является постоянным параметром, не зависящим от условий течения жидкости.
Неньютоновской называется жидкость, коэффициент вязкости которой зависит не только от природы вещества и температуры, но также и от условий течения жидкости, в частности от градиента скорости. Коэффициент вязкости в этом случае не является константой вещества. При этом вязкость жидкости характеризуют условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (например, давление, скорость). Зависимость силы вязкости от градиента скорости становится нелинейной:
(9.1, а)
где n характеризует механические свойства при данных условиях течения.
Примером неньютоновских жидкостей являются суспензии. Если имеется жидкость, в которой равномерно распределены твердые невзаимодействующие частицы, то такую среду можно рассматривать как однородную, т.е. мы интересуемся явлениями, характеризующимися расстояниями, большими по сравнению с размером частиц. Свойства такой среды в первую очередь зависят от вязкости жидкости. Система же в целом будет обладать уже другой, большей вязкостью h¢ зависящей от формы и концентрации частиц. Для случая малых концентраций частиц С справедлива формула:
(9.2)
Если структура частиц изменится (например, при изменении условий течения), то и коэффициент К в (9.2), а следовательно, и вязкость такой суспензии h’ также изменится. Подобная суспензия представляет собой неньютоновскую жидкость. Увеличение вязкости всей системы связано с тем, что работа внешней силы при течении суспензий затрачивается не только на преодоление истинной (неньютоновской) вязкости, обусловленной межмолекулярным взаимодействием в жидкости, но и на преодоление взаимодействия между ней и структурными элементами.
Условия образования агрегатов различны в крупных и мелких сосудах. Это связано в первую очередь с соотношением размеров сосуда, агрегата и эритроцита характерные размеры dэр=8 мкм, dагр»10dэр:
1. Крупные сосуды (аорта, артерии):
Диаметр сосуда больше диаметра агрегата и значительно диаметра эритроцита. При этом градиент скорости сдвига небольшой, эритроциты собираются в агрегаты в виде монетных столбиков. В этом случае вязкость крови h = 0,005 Па • с.
2. Мелкие сосуды (мелкие артерии, артериолы):
Диаметр сосуда меньше диаметра агрегата и больше в 5–20 диаметра эритроцита
В них градиент скорости сдвига значительно увеличивается и агрегаты распадаются на отдельные эритроциты, тем самым уменьшая вязкость системы. Для этих сосудов чем меньше диаметр просвета, тем меньше вязкость крови. В сосудах диаметром около 5 d эр вязкость крови составляет примерно 2/3 вязкости крови в крупных сосудах.
3. Микрососуды (капилляры):
Диаметр сосуда меньше диаметра эритроцита
В живом сосуде эритроциты легко деформируются, становясь похожими на купол, и проходят, не разрушаясь, через капилляры даже диаметром 3 мкм. В результате поверхность соприкосновения эритроцитов со стенкой капилляра увеличивается по сравнению с недеформированным эритроцитом, способствуя обменным процессам.
Для описания процессов в микрососудах формула (9.2) не применима, так как в этом случае не выполняются допущения об однородности среды и твердости частиц.
Таким образом, внутренняя структура крови, а следовательно, и ее вязкость (9.2), оказывается неодинаковой вдоль кровеносного русла в зависимости от условий течения. Кровь является неньютоновской жидкостью. Зависимость силы вязкости от градиента скорости для течения крови по сосудам не подчиняется формуле Ньютона (9.1) и является нелинейной.
Как и у любой жидкости, вязкость крови возрастает при снижении температуры. Например, при уменьшении температуры с 37° до 17° вязкость крови возрастает на 10 %.