Что называется тангенсом угла

Тангенс

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Аргумент и значение тангенса

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Аргументом тангенса может быть:
— как число или выражение с Пи: \(1,3\), \(\frac<π><4>\), \(π\), \(-\frac<π><3>\) и т.п.
— так и угол в градусах: \(45^°\), \(360^°\),\(-800^°\), \(1^° \) и т.п.

Тангенс острого угла

1) Пусть дан угол и нужно определить тагенс этого угла.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

2) Достроим на этом угле любой прямоугольный треугольник.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

3) Измерив, нужные стороны, можем вычислить тангенс.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших \(360°\) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите \(tg\:0\).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус \(0\). И то, и другое найдем с помощью тригонометрического круга :

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Точка \(0\) на числовой окружности совпадает с \(1\) на оси косинусов, значит \(cos\:0=1\). Если из точки \(0\) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку \(0\), значит \(sin\:⁡0=0\). Получается: \(tg\:0=\) \(\frac\) \(=\) \(\frac<0><1>\) \(=0\).

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

2) Проводим через данную точку и начало координат прямую.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

3) В данном случае координату долго искать не придется – она равняется \(1\).

Пример. Вычислите \(tg\: 45°\) и \(tg\: (-240°)\).
Решение:
Для угла \(45°\) (\(∠KOA\)) тангенс будет равен \(1\), потому что именно в таком значении сторона угла, проходящая через начало координат и точку \(A\), пересекает ось тангесов. А для угла \(-240°\) (\(∠KOB\)) тангенс равен \(-\sqrt<3>\) (приблизительно \(-1,73\)).

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от \(-∞\) до \(+∞\), то есть может быть любым.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Знаки по четвертям

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Связь с другими тригонометрическими функциями:

Источник

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Данные определения даны для острого угла прямоугольного треугольника!

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Угол поворота

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Синус (sin) угла поворота

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Основные функции тригонометрии

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Источник

Тригонометрия. Понятие тригонометрической величины (тангенс и котангенс).

Значение каждой тригонометрической величины изменяется с изменением угла, которому она соответствует, т.е. тригонометрическая величина это функция угла.

Линией тангенса (ADl, AD2 и т.д.) является отрезок касательной, проведенной через конец А первого диаметра, от точки касания до пересечения с продолжением подвижного радиуса (OMl, ОМ2 и. т.д.).

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Линией котангенса (BEl, ВЕ2 и т.д.) является отрезок касательной, проведенной через конец В второго диаметра, от точки касания В до пересечения с продолжением подвижного радиуса (OM1, OM2 и т.д.).

Тангенс угла (tgх) – это отношение линии тангенса, взятого с соответствующим знаком, к радиусу.

Котангенс угла (сtgх) — отношение линии котангенса, взятого с соответствующим знаком, к радиусу.

Знаки тангенса и котангенса для различных четвертей указаны на рисунке ниже:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Секанс (secx) и косеканс (cosecx) проще всего определить как обратные величины косинуса и синуса.

Существуют законы, которые связывают все тригонометрические функции между собой, т. е позволяют их выражать одну через любую другую.

Источник

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

0
0
0
0
0

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача решается за четыре секунды.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Найдем по теореме Пифагора.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Источник

Синус, косинус, тангенс и котангенс (ЕГЭ 2022)

Понятия синуса, косинуса, тангенса, котангенса неразрывно связаны с понятием угла.

Не так страшен черт, как его малюют!

Чтобы хорошо разобраться в этих понятиях (нет, не в чёрте! в тригонометрии 🙂 ), начнём с самого начала.

Синус, косинус, тангенс, котангенс — коротко о главном.

Синус угла — это отношение противолежащего (дальнего) катета к гипотенузе

Косинус угла — это отношение прилежащего (близкого) катета к гипотенузе

Тангенс угла — это отношение противолежащего (дальнего) катета к прилежащему (близкому)

Котангенс угла — это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Понятие угла: радиан, градус

Давай для начала разберёмся в понятии угла.

Посмотрим на рисунок.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Вектор \( AB\) «повернулся» относительно точки \( A\) на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол \( \alpha \).

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в \( 1<>^\circ \) (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную \( \frac<1><360>\) части окружности.

Таким образом, вся окружность состоит из \( 360\) «кусочков» круговых дуг. То есть угол, описываемый окружностью, равен \( 360<>^\circ \).

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

То есть на рисунке выше изображён угол \( \beta \), равный \( 50<>^\circ \), то есть этот угол опирается на круговую дугу размером \( \frac<50><360>\) длины окружности.

Углом в \( 1\) радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности.

Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Итак, на рисунке изображён угол \( \gamma \), равный \( 1\) радиану.

То есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина \( AB\) равна длине \( BB’\) или радиус \( r\) равен длине дуги \( l\)).

Таким образом, длина дуги вычисляется по формуле:

\( l=\theta \cdot r\), где \( \theta \) — центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью?

Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен \( 2\pi \).

То есть, соотнеся величину в градусах и радианах, получаем, что \( 2\pi =360<>^\circ \).

Соответственно, \( \pi =180<>^\circ \).

Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют \( 60<>^\circ \)?

Уловил? Тогда вперёд закреплять:

Тогда смотри ответы:

Cинус, косинус, тангенс, котангенс угла в прямоугольном треугольнике

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла?

Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Как называются стороны прямоугольного треугольника?

Всё верно, гипотенуза и катеты.

Гипотенуза — это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \( AC\))

Катеты – это две оставшиеся стороны \( AB\) и \( BC\) (те, что прилегают к прямому углу).

Причём, если рассматривать катеты относительно угла \( \angle BAC\), то катет \( AB\) – это прилежащий катет, а катет \( BC\) — противолежащий.

Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике \( \sin \beta =\frac\).

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике \( \cos \beta =\frac\).

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике \( tg\beta =\frac\).

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике \( ctg\beta =\frac\).

Эти определения необходимо запомнить!

Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе.

А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле).

Тогда убедись, посмотрев на рисунок:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Рассмотрим, к примеру, косинус угла \( \beta \).

По определению, из треугольника \( ABC\): \( \cos \beta =\frac=\frac<4><6>=\frac<2><3>\).

Но ведь мы можем вычислить косинус угла \( \beta \) и из треугольника \( AHI\): \( \cos \beta =\frac=\frac<6><9>=\frac<2><3>\).

Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Тогда пробуй сам: посчитай то же самое для угла \( \beta \).

Ответы: \( \sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\frac<4><3>\).

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \( 1\).

Такая окружность называется единичной. Еще ее называют тригонометрической. Это одно и тоже.

Эта окружность — универсальная шпаргалка для решения уравнений и даже неравенств, если уметь ей пользоваться!

У нас есть целая статья, посвященная ей, которая так и называется «Тригонометрическая (единичная) окружность».

Здесь мы тоже ее разберем довольно подробно.

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Как можно заметить, данная окружность построена в декартовой системе координат.

Радиус окружности равен единице.

При этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \( x\) (в нашем примере, это радиус \( AB\)).

Каждой точке окружности соответствуют два числа: координата по оси \( x\) и координата по оси \( y\).

А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме?

Для этого надо вспомнить про рассмотренный прямоугольный треугольник.

На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника.

Рассмотрим треугольник \( ACG\). Он прямоугольный, так как \( CG\) является перпендикуляром к оси \( x\).

Чему равен \( \cos \ \alpha \) из треугольника \( ACG\)?

Всё верно \( \cos \ \alpha =\frac\).

Кроме того, нам ведь известно, что \( AC\) – это радиус единичной окружности, а значит, \( AC=1\).

Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен \( \sin \ \alpha \) из треугольника \( ACG\)?

Ну конечно, \( \sin \alpha =\frac\)!

Подставим значение радиуса \( AC\) в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка \( C\), принадлежащая окружности? Ну что, никак?

А если сообразить, что \( \cos \ \alpha \) и \( \sin \alpha \) — это просто числа?

Какой координате соответствует \( \cos \alpha \)?

Ну, конечно, координате \( x\)!

А какой координате соответствует \( \sin \alpha \)?

Всё верно, координате \( y\)!

Таким образом, точка \( C(x;y)=C(\cos \alpha ;\sin \alpha )\).

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

А чему тогда равны \( tg \alpha \) и \( ctg \alpha \)?

Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \( tg \alpha =\frac<\sin \alpha ><\cos \alpha >=\frac\), а \( ctg \alpha =\frac<\cos \alpha ><\sin \alpha >=\frac\).

А что, если угол будет больше \( 90<>^\circ =\frac<\pi ><2>\)?

Вот, к примеру, как на этом рисунке:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Что же изменилось в данном примере?

Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику.

Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \( y\); значение косинуса угла – координате \( x\); а значения тангенса и котангенса соответствующим соотношениям.

Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \( x\).

До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке?

Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным.

Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы, а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \( 360<>^\circ \) или \( 2\pi \).

В первом случае, \( 390<>^\circ =360<>^\circ +30<>^\circ \), таким образом, радиус-вектор совершит один полный оборот и остановится в положении \( 30<>^\circ \) или \( \frac<\pi ><6>\).

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \( 360<>^\circ \cdot m\) или \( 2\pi \cdot m\) (где \( m\) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \( \beta =-60<>^\circ \).

Этот список можно продолжить до бесконечности.

Все эти углы можно записать общей формулой \( \beta +360<>^\circ \cdot m\) или \( \beta +2\pi \cdot m\) (где \( m\) – любое целое число)

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Возникли трудности? Тогда давай разбираться.

Отсюда мы определяем координаты точек, соответствующих определённым мерам угла.

Ну что же, начнём по порядку: углу в \( 90<>^\circ =\frac<\pi ><2>\) соответствует точка с координатами \( \left( 0;1 \right)\), следовательно:

\( \text\ 90<>^\circ =\frac=\frac<1><0>\Rightarrow \text\ 90<>^\circ \) — не существует;

Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\( \displaystyle \sin \ 180<>^\circ =\sin \ \pi =0\) \( \displaystyle \cos \ 180<>^\circ =\cos \ \pi =-1\) \( \text\ 180<>^\circ =\text\ \pi =\frac<0><-1>=0\)

\( \text\ 180<>^\circ =\text\ \pi =\frac<-1><0>\Rightarrow \text\ \pi \) — не существует

\( \sin \ 270<>^\circ =-1\) \( \cos \ 270<>^\circ =0\)

\( \text\ 270<>^\circ =\frac<-1><0>\Rightarrow \text\ 270<>^\circ \) — не существует

\( \text\ 270<>^\circ =\frac<0><-1>=0\) \( \sin \ 360<>^\circ =0\) \( \cos \ 360<>^\circ =1\) \( \text\ 360<>^\circ =\frac<0><1>=0\)

\( \text\ 360<>^\circ =\frac<1><0>\Rightarrow \text\ 2\pi \) — не существует

\( \sin \ 450<>^\circ =\sin \ \left( 360<>^\circ +90<>^\circ \right)=\sin \ 90<>^\circ =1\) \( \cos \ 450<>^\circ =\cos \ \left( 360<>^\circ +90<>^\circ \right)=\cos \ 90<>^\circ =0\)

\( \text\ 450<>^\circ =\text\ \left( 360<>^\circ +90<>^\circ \right)=\text\ 90<>^\circ =\frac<1><0>\Rightarrow \text\ 450<>^\circ \) — не существует

\( \text\ 450<>^\circ =\text\left( 360<>^\circ +90<>^\circ \right)=\text\ 90<>^\circ =\frac<0><1>=0\).

Таким образом, мы можем составить следующую табличку:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Нет необходимости помнить все эти значения!

Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в \( 30<>^\circ =\frac<\pi ><6>,\ 45<>^\circ =\frac<\pi ><4>\) и \( 30<>^\circ =\frac<\pi ><6>,\ 45<>^\circ =\frac<\pi ><4>\), приведённых ниже в таблице, необходимо запомнить:

Что называется тангенсом угла. Смотреть фото Что называется тангенсом угла. Смотреть картинку Что называется тангенсом угла. Картинка про Что называется тангенсом угла. Фото Что называется тангенсом угла

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *