Что называется связью сопромат
Лекция 2. Связи и их реакции
2.1. Понятие о связях
В Лекции 1 были даны определения свободных и несвободных тел. Возможное движение таких тел, соответственно, ничем не ограничено или же, наоборот, стеснено другими телами. Любые ограничения, накладываемые на движение тела, называют связями. Как правило, связи реализуются с помощью других тел.
Пример. Для лежащего на столе карандаша стол служит связью – он не дает карандашу падать вниз.
Пытаясь двигаться, тело вступает с наложенной на него связью в механическое взаимодействие и действует на нее с силой, которую называют силой давления на связь. Согласно закону равенства действия и противодействия, связь действует на тело с силой, равной по модулю, но противоположной по направлению. Сила, с которой связь действует на тело, называется силой реакции или реакцией связи. Она направлена в сторону, противоположную той, куда связь мешает телу двигаться. В более сложных случаях связь описывается не одной силой, а системой сил.
В теоретической механике применяется принцип освобождаемости от связей:
Пример. Карандаш, лежащий на столе, под действием силы тяжести \(\vec G\) должен двигаться вниз. Этого не происходит, потому что на карандаш действует реакция стола \(\vec N\), направленная вверх и уравновешивающая силу тяжести (рис. 2.1).
Рис. 2.1. Карандаш под действием силы тяжести и реакции связи
Как правило, проектируемые сооружения, конструкции и механизмы не «плавают свободно» в пространстве; их перемещения стеснены какими-то связями. Поэтому поиск реакций связей, наложенных на тело, – важная задача. Знать реакции связей, наложенные на тело, необходимо по двум причинам:
Требуется знать, выдержит ли связь давление, оказываемое на нее телом. Это давление равно реакции, которую развивает связь.
Пример. Мосты и путепроводы могут выдерживать строго определенную нагрузку, поэтому на них устанавливают ограничения по массе въезжающих автомобилей и устанавливают соответствующие дорожные знаки (рис. 2.2). В этом примере мост служит связью для изучаемого твердого тела (автомобиля).
Пример. Спускаемые модули космических кораблей проектируют таким образом, чтобы они выдерживали жесткую посадку (удар о Землю). При ударе на эти модули действует сила реакции Земли, не дающей им падать дальше.
2.2. Простейшие виды связей
Ниже рассматриваются некоторые виды связей и указываются направления их реакций.
Гладкая поверхность (опора). Будем называть гладкой поверхность, трением о которую можно пренебречь. Реакция \(\vec N\) этой связи направлена перпендикулярно поверхности. Это объясняется тем, что при движении вдоль гладкой поверхности сопротивления не возникает; зато связь мешает телу «проваливаться» внутрь поверхности. Если поверхность искривлена, то сила ее реакции направлена перпендикулярно к касательной плоскости (рис. 2.3).
Рис. 2.3. Направление реакции плоской горизонтальной, плоской наклонной и искривленной поверхности
Замечание. Соприкосновение тела и поверхности может происходить не в единственной точке, а на некоторой площадке. Это значит, что действие тела на поверхность (как и ее реакция) будут представлять собой распределенную силу. Для простоты вычислений ее заменяют сосредоточенной равнодействующей.
Из-за того, что вектор \(\vec N\) направлен перпендикулярно (по нормали) к поверхности, эту реакцию также называют нормальной.
Пример. Гладкой поверхностью можно считать стол, на котором покоится некий предмет, например, карандаш (см. рис. 2.1).
Если одна поверхность опирается на другую своим ребром (изломом), то направление реакции перпендикулярно той поверхности, к которой в месте контакта можно провести касательную. Так, на рис. 2.4 а) показаны реакции поверхности в двух точках – A и B. Если же обе поверхности в месте соприкосновения имеют излом, как в точке A на рис. 2.4 б), то направление реакции нельзя определить заранее.
Однако положение равновесия, подобное рис. 2.4 б), крайне неустойчиво. Если представить себе, что на рисунке изображена балка, положенная на бордюр, то она упадет при малейшем сотрясении. Поэтому указанный случай представляет, скорее, теоретический интерес.
Нить. Представление о такой связи дает леска, на которой подвешен груз. Нить предполагается невесомой, гибкой (она может сминаться), тонкой и нерастяжимой (сохраняющей свою длину). Эпитет «тонкая» означает, что ее толщина много меньше длины, и поэтому свойства нити одинаковы во всех точках ее поперечного сечения. Такая связь препятствует движению тела лишь в одном направлении – вдоль по нити в сторону ее растяжения. Поэтому реакция данной связи (натяжение \(\vec T\)) направлена вдоль нити в сторону точки подвеса (рис. 2.5).
Рис. 2.5. Направление натяжения нити
Пример. На груз маятника действуют две силы: тяжести \(\vec G\) и натяжения нити \(\vec T\) (рис. 2.6). Согласно правилу параллелограмма, они имеют равнодействующую, которая в положении, указанном на рисунке, направлена вниз и налево. Поэтому маятник, выведенный из вертикального положения и предоставленный сам себе, начнет двигаться в обозначенную сторону.
Цилиндрический шарнир (подшипник). Эта связь соединяет два тела так, что одно может вращаться относительно другого вокруг оси, называемой осью шарнира. Считается, что реакция \(\vec R\) шарнира лежит в плоскости, перпендикулярной его оси; но заранее определить направление реакции в этой плоскости, как правило, нельзя. Дело в том, что подобное закрепление тела не позволяет ему двигаться в любом направлении, перпендикулярном указанной оси.
Пример. Соединение двери и косяка с помощью петель (рис. 2.7) можно считать шарниром. Действительно, прикладывая усилие, перпендикулярное оси вращения, нельзя «сдернуть» дверь с петель, не повредив косяка.
В двух предыдущих случаях (опора и нить) задача об определении реакции связи содержала одну неизвестную величину – модуль (числовое значение) реакции. В случае цилиндрического шарнира искомых величин две – надо узнать еще и направление реакции в плоскости вращения. Но выбирают неизвестные разными способами, в зависимости от удобства.
Во-первых, можно искать модуль реакции R и угол α, образуемый данным вектором с какой-либо прямой в плоскости вращения. Если ввести в этой плоскости систему координат, этой прямой может быть, например, ось абсцисс, как на рис. 2.8 а). Во-вторых, можно разложить искомый вектор \(\vec R\) на две составляющие, направленные вдоль осей координат, как на рис. 2.8 б). Тогда потребуется найти числовую величину каждой из составляющих.
Рис. 2.8. Тело AB закреплено в точке А с помощью цилиндрического шарнира
Сферический шарнир соединяет тела так, что они могут вращаться друг относительно друга вокруг одной точки – центра шарнира (рис. 2.9).
Указанная точка не может совершить никакого перемещения относительно обоих тел. Поэтому реакция сферического шарнира в пространстве может иметь любое направление. Аналогично цилиндрическому шарниру, при решении задач эту реакцию часто раскладывают на три компоненты, направленные вдоль координатных осей (рис. 2.10).
Рис. 2.10. Сферический шарнир A реагирует на тело AB с силой \(\vec R\), которая раскладывается на компоненты \(\vec X_\), \(\vec Y_\) и \(\vec Z_\)
Частным случаем сферического шарнира является подпятник – подшипник с упором. Его схематичное изображение представлено на рис. 2.11.
Рис. 2.11. Тело AB в точке A связано подпятником
Реакция подпятника также имеет произвольное направление в пространстве.
Подвижный шарнир. Конструктивно эта связь представляет собой цилиндрический или сферический шарнир, соединяющий тело с некоторой поверхностью и способный перемещаться по ней. Такая способность может достигаться водружением шарнира на катки (из-за чего его также называют опорой на катках). Поскольку шарнир не препятствует движению тела вдоль поверхности, его реакция направлена перпендикулярно ей (рис. 2.12).
Рис. 2.12. Реакция подвижного шарнира
Пример. Подвижные шарниры могут использоваться при строительстве металлических мостов. Если оба конца такого моста закрепить неподвижно, то летом, удлинняясь при повышении температуры, мост будет выгибаться дугой (рис. 2.13 а). Зимой при охлаждении конструкция станет сужаться, пытаясь сорвать крепления (рис. 2.13 б).
Рис. 2.13. Металлический мост при нагревании и охлаждении
Такие деформации малозаметны, но, повторяясь из года в год, они могут не только привести в негодность дорожное покрытие, но и вызвать разрушение самого моста. Поэтому один из неподвижных шарниров заменяют подвижным (рис. 2.14). Это дает мосту возможность растягиваться и сжиматься без катастрофических последствий.
C математической точки зрения подвижный шарнир полностью аналогичен опоре: реакции обеих связей перпендикулярны рассматриваемой поверхности. Тем не менее, из-за его конструктивных особенностей подвижный шарнир лучше рассматривать отдельно.
Невесомый стержень служит для соединения двух тел; предполагается, что к обоим телам он прикреплен шарнирами (как правило, сферическими, если тела рассматриваются в пространстве, и цилиндрическими, если речь идет о плоской задаче). Аналогично нити, толщина стержня обычно много меньше его длины, и ее не берут в расчет. Кроме того, как понятно из названия, весом такого стержня по сравнению с наложенной на него нагрузкой можно пренебречь.
Замечание. «Невесомость» стержня – это очередная идеализация. Металлические стержни, составляющие каркас многих строительных конструкций, могут иметь массу в десятки и сотни килограммов (соответственно, их вес может составлять тысячи ньютонов). Но они воспринимают нагрузку во много раз большую: например, достаточно сравнить массу металлической арматуры со всей массой железобетонной плиты. Поэтому весом стержней зачастую пренебрегают.
Реакция \(\vec S\) прямого невесомого стержня, имеющего шарнирное закрепление, направлена вдоль самого стержня. Действительно, пусть стержень AB соединяет два тела: AC и BC (рис. 2.15).
Рис. 2.15. Определение направления реакции прямого стержня
Это значит, что к нему приложены две силы – в точках A и B. Поскольку стержень неподвижен, они находятся в равновесии. Согласно первой аксиоме статики, это значит, что эти силы направлены вдоль стержня. По закону равенства действия и противодействия, стержень реагирует на это воздействие с силой, равной по модулю, но противоположной по направлению. Поэтому реакция также направлена вдоль стержня.
Рассуждая аналогичным образом, легко показать, что реакция криволинейного шарнирно закрепленного стержня направлена вдоль хорды, соединяющей его концы (рис. 2.16).
Рис. 2.16. Определение направления реакции изогнутого стержня
Следует учитывать, что имеется два возможных направления реакции данной связи; выбор конкретного направления зависит как от состояния, в котором находится стержень, так и от того, в каком из концов тела эта реакция рассматривается. Так, выше на рис. 2.15 и рис. 2.16 изображены случаи, в которых стержень сжат (например, он удерживает плиту BC от падения на горизонтальную поверхность AC). Противодействуя этому сжатию, он стремится растянуться, поэтому реакция \(\vec S\) в точке B направлена в сторону от стержня. Если стержень растянут (например, он скрепляет тела AC и BC, а мы стараемся оторвать одно тело от другого), то он попытается сжаться, и направление вектора \(\vec S\) следует изменить на противоположное – развернуть его внутрь стержня.
Иногда можно рассматривать стержень как результат отвердевания нити. Например, с точки зрения теоретической механики безразлично, как груз маятника соединяется с часовым механизмом: с помощью тонкой нити или стержня. Тем не менее, между двумя этими связями существует разница. В отличие от нити, стержень не может сминаться. Кроме того, направление реакции нити определено однозначно, а реакция стержня может быть направлена двумя разными способами.
Существуют и другие виды связей, которые будут рассмотрены в Лекции 3.
2.3. Тело на гладкой наклонной плоскости
Ниже мы рассмотрим простой, но важный пример, на котором покажем последовательность решения задач о равновесии твердого тела.
Пусть груз веса P находится на гладкой плоскости, наклоненной к горизонту под углом α, и удерживается нитью, натянутой вдоль самой поверхности. Требуется найти реакцию плоскости N и натяжение нити T. Параметр α может меняться в пределах от 0° до 90°.
Разобьем решение на несколько этапов.
Выберем тело, равновесие которого будет рассматриваться (в нашем случае – груз) и сделаем первоначальный чертеж (рис. 2.17)
Изобразим силы, действующие на выбранное тело. В нашем случае на груз действует сила тяжести \(\vec G\), направленная вертикально вниз и численно равная его весу P. Движение груза ограничено двумя связями – поверхностью и нитью. Согласно принципу освобождаемости от связей, их можно отбросить, заменив реакциями – нормальной реакцией \(\vec N\) и натяжением \(\vec T\), соответственно (рис. 2.18).
Составим условия равновесия. Поскольку система сил, действующих на тело, сходится (мы пренебрегаем размерами груза), то условие равновесия выражается единственным векторным равенством:
\(\vec G+\vec N+\vec T=\vec 0.\) | (2.1) |
Введем систему координат так, как показано на рис. 2.19: ось x направим параллельно поверхности, ось y – перпендикулярно ей.
Спроецируем обе части равенства (2.1) на оси координат и получим систему линейных уравнений относительно неизвестных N и T:
\begin (2.2) | |
При нахождении проекций мы воспользовались известным из планиметрии фактом: если соответственные стороны двух углов перпендикулярны, то эти углы равны. Фактически это утверждение означает, что один угол получается из другого поворотом на 90° и последующим переносом в другое место на плоскости.
Горизонтальная прямая перпендикулярна линии действия силы \(\vec G\), оси x и y также перпендикулярны. Поэтому угол между вектором \(\vec G\) и отрицательным направлением оси y равен углу α между горизонтальной прямой и осью x.
В более сложных задачах, в которых к телу прикладывается большое количество сил, можно оформлять вычисление проекций на координатные оси в виде таблицы:
|
Уравнения в проекции на ту или иную ось получаются суммированием (с учетом знаков) всех слагаемых в соответствующей строке таблицы.
Решим полученную систему и проанализируем решение. Из (2.2) получаем, что T = P sin α, N = P cos α. Тем самым, реакции связей найдены; выясним, как они ведут себя в зависимости от угла α. При α = 0° получаем N = P, T = 0, что согласуется с чисто физическими соображениями: если опорная поверхность горизонтальна, то она полностью воспринимает вес груза, а удерживающая нить остается ненатянутой. При α = 90° (вертикальная поверхность) N = 0, T = P, т.е. груз удерживается только нитью, а поверхность его движению не препятствует.
В общем случае, если убрать нить (положить T = 0 независимо от веса P), то груз не будет находиться в равновесии. Действительно, проекция вектора \(\vec G+\vec N\) на ось y равна нулю, а на ось x она составляет –P sin α. При α ≠ 0° эта проекция меньше нуля, а значит, тело станет двигаться в сторону, противоположную оси y (вниз).
Из нашего решения и закона равенства действия и противодействия следует, что сила давления груза на опорную плоскость равна P sin α, а на нить – P cos α. Если максимально допустимые для опоры и нити нагрузки меньше указанных значений, то связи не выдержат указанного давления: плоскость может деформироваться или разрушиться, а нить – оборваться.
Замечание. Направление координатных осей выбирается из соображений удобства. Как правило, они проводятся параллельно или перпендикулярно неизвестным реакциям. Это сводит к минимуму число неизвестных проекций; тем самым, уравнения типа (2.2) упрощаются. Оси координат можно было бы провести и каким-либо другим образом. Например, ось x можно было бы направить по горизонтали направо, а ось y – вертикально вверх; их можно было бы ориентировать относительно сил совершенно произвольным образом. Конечный ответ задачи при этом бы не изменился, но нахождение проекций и последующее решение системы уравнений усложнилось бы. Приемы упрощения уравнений равновесия с помощью выбора системы координат излагаются далее в п. 4.3.
Вопросы для самоконтроля
Груз располагается на конце невесомого стержня, который с помощью цилиндрического шарнира закреплен в неподвижной точке A. Стержень отклонили от вертикали на угол α (рис. 2.20). При каких значениях α груз будет находиться в равновесии? Что изменится, если заменить стержень нитью?
Задачи к лекции
Лампа веса 40 Н подвешена к потолку на двух одинаковых цепочках длины 26 см каждая. Расстояние между точками их подвеса составляет 40 см (рис. 2.21). Найти натяжение каждой из цепочек.
Прибор веса 1200 Н хотят установить на легкую треногу, каждая из ножек которой имеет длину 2 м. В рабочем состоянии основания ножек образуют правильный треугольник со стороной 1 м (рис. 2.22). Выдержит ли тренога нагрузку, создаваемую прибором, если каждая из ее опор рассчитана на максимальную нагрузку 380 Н?
Ответы. 1. 52 Н. 2. Не выдержит: нагрузка на каждую опору составит около 417.79 Н.
Также рекомендуется решить задачи из §§1, 2, 6 [2].
Техническая механика. Шпаргалка
Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.
Оглавление
Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
2. Связи и реакции связей
Все тела делятся на свободные и связанные.
Свободные тела — это тела, перемещение которых не ограничено.
Связанные тела — это тела, перемещение которых ограничено другими телами.
Тела, ограничивающие перемещение других тел, называют связями.
Силы, действующие от связей и препятствующие перемещению, называют реакциями связей. Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.
Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей).
Связи делятся на несколько типов.
Связь — гладкая опора (без трения) — реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре.
Гибкая связь (нить, веревка, трос, цепь) — груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.
Жесткий стержень — стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.
Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент.
Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.
Подвижный шарнир. Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, так как не допускается только перемещение поперек опорной поверхности.
Неподвижный шарнир. Точка крепления перемещаться не может.
Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее изображают в виде двух составляющих: горизонтальной и вертикальной (Rx, Ry).
Защемление, или «заделка». Любые перемещения точки крепления невозможны.
Под действием внешних сил в опоре возникают реактивная сила и реактивный момент Мz, препятствующий повороту.
Реактивная сила представляется в виде двух составляющих вдоль осей координат:
Сопромат для чайников
По большому счету основы теории сопротивления материалов (сопромата) даже проще, чем таблица умножения. Таблица умножения большая, ее нужно тупо заучить как «Отче наш», а основы сопромата сводятся к нескольким основным положениям, которые достаточно легко наглядно продемонстрировать и потому их легко запомнить даже абсолютному «чайнику» в сопромате.
Обстоятельства сложились так, что вступительный курс лекций по сопромату я пропустил, так как вернулся после службы на флоте в институт за 2 недели до сессии, поэтому основы сопромата пришлось постигать самому, за что самый суровый и неподкупный препод на потоке, заваливший не одну сотню студентов, поставил мне пятерку. Ну и понеслось, преподаватели, видя пятерку по сопромату, ставить меньшую отметку по своему предмету не решались и в итоге у меня получился красный диплом.
Впрочем не будем отвлекаться, а вернемся к основам в изложении такого же чайника, как и некоторые из вас.
Если совсем кратко, то основы сопромата, изложенные в данной статье, звучат так:
Вот в принципе и все, далее следуют формулы и прочие расчеты, но попробуем добавить больше наглядности этим положениям на примере балки.
Чтобы наглядно представить себе основы сопромата, достаточно иметь две простых школьных деревянных линейки, например, длиной 20 и 40 см и несколько книг, учебники по сопромату подойдут здесь как нельзя лучше, и стол. Впрочем можно иметь и одну пластмассовую или алюминиевую линейку любой длины и книги любого содержания.
1. Виды опор.
Теперь нужно положить линейку плашмя на два выступа, например на 2 книжки:
Рисунок 1.
Если посмотреть на линейку сбоку, то будет видно не только название учебника, но и то, что линейка лежит плашмя.
1.1. Шарнирные опоры
С одной стороны все вроде бы просто, лежит себе линейка на книгах, ну и пусть лежит, а вот если взглянуть на эту ситуацию с точки зрения теоретической механики (до сопромата мы пока еще не добрались), то мы с Вами имеем не обычную школьную линейку, лежащую на книгах, а модель балки на двух скользящих шарнирных опорах и выглядеть это будет так:
Рисунок 2.1
1.2. Горизонтальные линии с косой заштриховкой снизу означают некое устойчивое основание, в данном случае это стол.
1.3. Некоторое расстояние между основанием и опорами балки, обозначенными треугольниками, является неким подобием воздушной подушки и означает, что опоры могут скользить по основанию без трения.
1.4. На самом деле у нашей линейки нет никаких шарниров, связывающих ее с опорами, а опирается линейка, если очень хорошо присмотреться, на выступающие корешки книг и можно изобразить нашу линейку например так:
Рисунок 2.2
В технической литературе такое отображение опор (без шарниров) также встречается и означает, что опоры не препятствуют повороту, но препятствуют перемещению по вертикали и по горизонтали.
1.5. на рисунке 2.1 шарниры находятся на концах балки, на рисунке 2.2 треугольники опор находятся на некотором расстоянии от концов балки. С точки зрения теоретической механики никакой разницы тут нет, если принимать расстояние между опорами и на рисунке 2.1 и на рисунке 2.2 одинаковым, а на концы линейки, находящиеся за пределами опор, ни какая нагрузка не действует.
Расчетная длина балки
1.2. Опорные связи шарнирно закрепленной балки
Любое физическое тело, в данном случае линейка, имеет три степени свободы движения в рассматриваемой плоскости ху: 1) тело может перемещаться вдоль оси х, 2) тело может перемещаться вдоль оси у, 3) тело может вращаться вокруг некоторой точки, даже если свобода перемещения относительно осей х и у ограничена.
Соответственно любая устойчивая и статически определимая конструкция должна иметь как минимум три опорных связи, ограничивающих указанные степени свободы. Балка, показанная на рисунке 2.1, является статически определимой, но не устойчивой, так как у нее только 2 параллельные вертикальные связи. Балка, показанная на рисунке 2.2, является устойчивой, но статически неопределимой, так как у нее 2 вертикальные и две горизонтальные опорные связи. А уравнения статического равновесия позволяют определить только три неизвестных величины (об этом чуть позже).
Поэтому в технической литературе часто встречается следующее отображение шарнирных опор балки:
Рисунок 2.3
Физический смысл такого отображения опорных связей следующий:
2. Эти связи шарнирно соединены не только с балкой но и с неким жестким основанием. А это в свою очередь означает, что не только балка может свободно поворачиваться относительно опорных связей, но и опорные связи могут свободно поворачиваться относительно жесткого основания.
3. Для обеспечения геометрической неизменяемости (устойчивости) системы горизонтальная опорная связь необходима, хотя при расчетах на вертикальную нагрузку она вроде бы и не нужна, но это уже отдельная история.
5. Таким образом вертикальная опорная связь на опоре В, показанная ни рисунке 2.3, препятствует только вертикальному перемещению балки в точке В и соответствует скользящей шарнирной опоре, показанной на рисунке 2.1. Такая опора в точке В называется шарнирно подвижной опорой.
Казалось бы, для нашей линейки такое отображение опорных связей не подходит, никакой ярко выраженной горизонтальной связи у линейки по умолчанию нет (за исключением сил трения), но тут все зависит от того, какие именно задачи предстоит решать.
Достаточно часто балки рассчитываются на вертикальную нагрузку, действующую вдоль оси координат у, при этом никаких сил, действующих вдоль оси координат х, нет или их сумма равна 0. Кроме того, если приложенные горизонтальные нагрузки будут меньше, чем силы трения, возникающие на опорных участках балки под действием вертикальной нагрузки, то в таких случаях схема балки, приведенная на рисунке 2.3, для нашей линейки вполне допустима.
1.3 Жесткое защемление на опорах
Если пригрузить концы линейки еще книгами:
Рисунок 3.
то такую линейку можно условно рассматривать, как балку, защемленную на опорах, и тогда модель балки будет выглядеть так:
Рисунок 3.1
Физический смысл такого отображения опор следующий: жесткая заделка препятствует не только вертикальному и горизонтальному перемещению балки на опоре, но также и повороту. т.е. ограничивает все 3 степени свободы физического тела. Такая опора называется жестким защемлением или глухой заделкой.
Мы можем легко в этом убедиться, если уберем одну из стопок книг. Линейка, защемленная в другой стопке, останется на месте.
Опять же в данном случае рассматривать балку как жестко защемленную не совсем правильно, если опорные участки достаточно короткие, а вот если книги с линейкой хорошо проклеить, и опорные участки у линейки сравнительно длинные, то после высыхания клея линейку уже можно рассматривать как балку, жестко защемленную на опорах.
Но все равно чаще всего при расчетах принимается вариант опор, показанный на рисунке №2.3. А вот железобетонные балки, которые бетонируются одновременно со стенами или металлические балки, жестко приваренные или прикрученные к очень жесткому основанию так, что составляют как бы единое целое, можно рассматривать как балки, защемленные на концах.
1.4. Скользящие заделки
Рисунок 3.2. а) заделка, скользящая относительно оси х; б) заделка, скользящая относительно оси у.
Т.е. одна из склеенных стопок книг нами по-прежнему рассматривается как глухая заделка на опоре А, а вот заделки на опоре В уже рассматриваются как скользящие. Такие заделки называются скользящими заделками или жесткими заделками с одной степенью свободы перемещения.
1.5. Если продолжить мысль и представить, что наша линейка очень прочно склеена из отдельных кусочков, то получается, что мы можем рассматривать любой участок нашей линейки, например, между отметками 5 и 15 см, как отдельную балку со скользящей заделкой на концах и могли бы изобразить нашу балку не как одну балку на двух шарнирных опорах, а как 2, 3 и сколь угодно много балок, из которых крайние балки имели бы по одной шарнирной опоре и на втором конце скользящую заделку, а все остальные балки имели бы скользящую заделку. В данном случае в таком усложнении задачи нет никакой необходимости, но часто такое допущение позволяет решать достаточно сложные задачи.
А чтобы такое предположение было корректным, мы для упрощения решения задачи должны рассекать нашу балку очень аккуратно в плоскости, перпендикулярной оси х и таким образом мы получим сколь угодно большое количество поперечных сечений балки. Зачем нужно рассматривать поперечные сечения, мы узнаем чуть позже.
Все. Больше никаких вариантов опор при решении задач по расчету строительных конструкций не рассматривается: или шарнирные опоры или заделка (защемление) на концах. Другое дело, что шарнирных опор у балки может быть сколь угодно много, один конец может быть защемлен, опоры, как шарнирные таки и жесткие, могут быть скользящими, шарнирные опоры могут давать осадку и даже представлять собой сплошное упругое основание, у балки могут быть консоли, но это уже варианты не опор, а варианты расположения и комбинации опор. Таких комбинаций может быть бесконечно много, но это уже не основы теоретической механики и здесь мы эти варианты рассматривать не будем.
Ну а теперь выясним, зачем нужно было городить эту конструкцию и что она нам дает.
2. Нагрузки (наружные силы).
Если повнимательнее присмотреться к рисунку 1, то можно увидеть, что линейка немного прогнулась посредине. Если взять более длинную 40-сантиметровую линейку и опереть ее на книги, то прогиб посредине линейки будет еще более заметным, но все равно пока не очень явным.
Почему же это случилось?
Рисунок 5.
2.1. Распределенная нагрузка может быть равномерной, как показано на рисунке 5, так и неравномерно распределенной, при этом значение распределенной нагрузки может изменяться линейно и не линейно, кроме того распределенная нагрузка может действовать не на всю длину балки, а на один или несколько участков. Если на балку действует несколько равномерно распределенных нагрузок, например: собственный вес, вес от кирпичной кладки, опирающейся на балку, и нагрузка от плит перекрытия то такие распределенные нагрузки можно суммировать, что в дальнейшем значительно облегчает расчеты. Подобный подход называется принципом суперпозиции.
2.2. Если у Вас есть палец, а я думаю, таковых у Вас имеется немало, то при надавливании пальцем на середину линейки линейка прогнется уже значительно заметнее. В этом случае на линейку действует кроме равномерно распределенной нагрузки еще и сосредоточенная (точечная) нагрузка (на рисунке 6 распределенная нагрузка не показана):
Рисунок 6.
Само собой точечных нагрузок может быть сколь угодно много и прикладываться они могут в любом месте балки и не только перпендикулярно оси балки, но и параллельно. Если сосредоточенная нагрузка приложена перпендикулярно на опоре, то на балку это никак не повлияет, просто возникнет реакция опоры численно равная нагрузке и направленная противоположно. Вы можете это легко проверить сами, надавив пальцем на линейку в месте опоры на одну из книг, если уж очень сильно давить, то Вы скорее промнете книгу, но линейка все равно не прогнется.
Почему так происходит?
Оказывается нагрузка, действуя на балку, создает изгибающий момент, т.е. хочет повернуть балку вокруг опор. При этом значение изгибающего момента напрямую зависит не только от величины нагрузки, но и от плеча действия силы. Нетрудно догадаться, что максимальный изгибающий возникает тогда, когда сосредоточенная нагрузка действует на балку посредине.
Конечно же действует этот момент на балку не просто так, а в рассматриваемом поперечном сечении балки и возникает он в данном случае от действия опорной реакции, которую еще следует определить, но об этом разговор пойдет дальше.
Иногда при расчетах вводится понятие вращающего момента, действующего на балку:
Рисунок 7.
Ну и теперь непосредственно сам сопромат, потому как до этого описывались термины и понятия теоретической механики.
3. Напряжения (внутренние силы).
Если на линейку, опертую на книги, как показано на рисунке 1, продолжать давить пальцем, то линейка будет прогибаться все сильнее и сильнее, пока в один прекрасный момент не поломается (конечно, вместо грубой физической силы Вы можете использовать мощь своего интеллекта, я возражать не буду)
Почему это происходит?
Оказывается всему есть предел и в данном случае был преодолен предел сопротивления материала (древесины), из которого изготовлена линейка.
Если к примеру взять стальную полосу с такими же параметрами сечения и такой же длины, как у деревянной линейки и тоже положим ее на книги и приложим к ней такую же нагрузку посередине, то поломать стальную полосу пальцем уже вряд ли получится, как минимум потому, что сопротивление стали в десятки раз больше сопротивления древесины. Но вернемся к рассмотрению деревянной линейки.
Когда Вы давите пальцем на линейку, то линейка деформируется, верхняя часть линейки сжимается и, соответственно в этой области возникают сжимающие нормальные напряжения. Нижняя часть линейки растягивается и, соответственно в этой области возникают растягивающие нормальные напряжения. Эти напряжения являются реакцией материала на действующую нагрузку.
Нормальными называются напряжения, направленные по нормали (перпендикулярно) рассматриваемому поперечному сечению балки.
Кроме нормальных в рассматриваемых сечениях могут возникать и касательные напряжения, а еще напряженные состояния могут быть не только линейными, но еще плоскими или объемными, но об этом опять же не сейчас.
Теория сопротивления материалов предполагает, что при таком действии нагрузки в середине поперечного сечения балки деформация равна 0 и, соответственно, никаких нормальных напряжений, ни растягивающих, ни сжимающих в середине поперечного сечения балки нет, а максимальные напряжения возникают посредине пролета балки сверху и снизу поперечного сечения. При этом эпюры внутренних нормальных напряжений в поперечных сечениях балки будут выглядеть так:
Рисунок 8.
Разрушение конструкции может начинаться как в верхней так и в нижней части. Расчет конструкции на прочность сводится к тому, чтобы этого самого разрушения не допустить. Другими словами, максимально возможные напряжения должны быть меньше сопротивления материала. В данном случае:
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Соизвольте принять Низкий поклон, флотский
Доктор Лом. Долгих лет Вашей мыслящей голове. Я очень небольшой изобретатель, очень нужен расчет конструкций и из дерева и из метала.
Мой сайт всегда к Вашим услугам, в разделе: «Расчет конструкций» есть примеры расчета некоторых наиболее распространенных деревянных и металлических конструкций. Там же можно задать более конкретный вопрос.
Док, спасибо огромное за то, что умеете доходчиво объяснить такие специфические науки как теор мех и сопромат. Я инженер-строитель и мне очень важно это знать. Начал разбираться 2 месяца назад, по вашим лекциям, с самого нуля (в институте дурака валял, а щас работа обязывает). Вопросов конечно много, но очень многое я смог понять, о чем раньше и представления не имел. Спасибо, док!
Большое спасибо автору.
Автору спасибо. Помнится в колледже мы расчитывали оч сложные вещи и называлось у нас это не сопромат, а прикладная механика. БУдем вспоминать
О,как я ненавидела сопромат. Но, в первый раз читая эту статью он мне стал интересен. Спасибо.
благодарен за информацию.горная академия заочно.
Насколько важен способ подачи материала. Просто, доходчиво, на пальцах. Лично я 30 лет назад это проходил, но хлопцы на форуме постоянно задают вопросы по основам. Так что линк забил. Спасибо.
Когда-то, в молодости, из-за сопромата бросила Бауманку.Сейчас приходиться наверстывать упущенное. Учусь заочно, дистанционно по строительной специальности. Думала никогда мне не понять этот предмет. Теперь, по-немногу, что-то проясняется. Огромное спасибо.
очень доступно и просто, спасибо!
Умно и просто изложено. «Отче наш» учите так же. )
Доктор Лом, спасибо за Ваши труды! Очень мне сейчас пригождаются в освежении знаний и ликвидации пробелов первых курсов ВУЗа.
Огромное спасибо!! Удачи автору!
Спасибо. Просто и понятно)))
Очень интересный ресурс с доходчивым изложением. Огромное спасибо автору за такой титанический труд.
Мне кажется что в тексте есть опечатки: во-первых, два пункта с номером 1.3, а во-вторых, в первом пункте 1.3 фразу «а опирается линейка, если очень хорошо присмотреться на выступающие корешки линейки» следует заменить на «а опирается линейка, если очень хорошо присмотреться на выступающие корешки книг»
Все верно (к сожалению времени на написание статей у меня критически мало, от того и случаются оплошности). Сейчас исправлю. Спасибо за внимательность.
Посмотрите статью «Виды опор, какую расчетную схему выбрать». Здесь же скажу, что если длина опорных участков плиты около половины толщины плиты, то это просто шарнирно опертая плита.
Соизвольте принять Низкий поклон, флотский
Доктор Лом. Долгих лет Вашей мыслящей голове. Я очень небольшой изобретатель, но очень нужен расчет каркаса вакуумного аэростата из углепластика. Аэростат нужен для получения экологически чистой электроэнергии в промышленных масштабах. Энергия ветра(скорость) на высоте от 500м намного больше, чем на высотах существующих ветряков. Аэростат(его величество Архимед) должен поднять конструкций длиной 1500-2000м. Выше плотность воздуха уменьшается и уменьшается сила Архимеда и уменьшается сила ветра. На вертикальном ветропарке, может работать моей конструкции 50-60ветродвигателей. Энергию ветра необходимо аккумулировать, так как скорость ветра не стабильна. Наилучший аккумулятор это энергия сжатого воздуха в замкнутом объеме. Поэтому ветродвигатели должны вращать винтовые компрессоры. Полученный сжатый воздух идет в низ, в ресиверы. На энергии сжатого воздуха в одну атмосферу работают на полную мощность мои двигатели и вращают типовой электрогенераторы. Уважаемый Доктор Лом, мы наверно одного возраста, значит осталось жить не долго. Давайте попробуем сделать что-то необычное. Что бы доказать, что не напрасно жили на божьем свете, не напрасно нас родили. Один я не вытяну, т.к. я весьма малограмотен.
спасибо автору, очень все понятно. Я, правда, еще в 10 классе, но иду на инженера и судя по всему это очень важный предмет, поэтому начну-ка изучать его сейчас
Доктор Лом, все статьи Вашего сайта написаны на высоком уровне! Спасибо и долгих счастливых Вам лет!
Здравствуйте. Меня интересуют некоторые вопросы по фундаменту для печи и фундаменту дома. Я хотел бы сделать перевод с карты Сбербанка на Вашу карту Сбербанка, т.к. яндекс кошелька у меня нет и других способов оплаты, кроме оплаты наличными я не знаю. Сообщите, пожалуйста, на какую карту сбербанка перевести деньги, или как ещё можно решить вопрос оплаты, не заводя яндекс-кошелька. Я опасаюсь заводить яндекс кошелёк, считая весьма вероятной возможность потерять деньги, в нём хранящиеся. Спасибо.
Юрий Николаевич, перевести деньги на яндекс-кошелек можно с любой карточки и даже с мобильного телефона, наличие собственного яндекс-кошелька совершенно не обязательно.
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).