Что называется свободной длиной сваи
12.1.4. Проектирование и расчет свайных фундаментов на подрабатываемых территориях (ч.2)
Б. РАСЧЕТ СВАИ С ШАРНИРНОЙ И ЖЕСТКОЙ ЗАДЕЛКОЙ ГОЛОВ В ВЫСОКИЙ И НИЗКИЙ РОСТВЕРКИ НА ГОРИЗОНТАЛЬНЫЕ ПЕРЕМЕЩЕНИЯ И НАГРУЗКИ
Расчет рассматриваемых свай на горизонтальные перемещения и нагрузки осуществляется при следующих допущениях:
здесъ θ — коэффициент обжатия грунта посередине участка b ; ω — коэффициент, принимаемый в зависимости от коэффициента n (отношения глубины погружения сваи к ее размеру поперечного сечения d в направлении перпендикулярном расчетному направлению действие перемещения или горизонтальной нагрузки):
n | 10 | 20 | 30 | 40 | 50 |
ω | 2,25 | 2,64 | 2,68 | 3,07 | 3,22 |
v — коэффициент Пуассона; Еh — модуль горизонтальной деформации грунта:
здесь EI — жесткость сваи; β — коэффициент, определяемый по рис. 12.7 или 12.8.
Для построения эпюр поперечных сил и изгибающих моментов в свае по рис. 12.7 и 12.8 следует определить коэффициенты: для поперечной силы — ql ( qA = qD ; qс = 0 ; qG = = 0,5qB ), а по формуле (12.32) — положение сечения в заглубленной части сваи с нулевым значением поперечной силы и максимальным значением сваи изгибающего момента; для изгибающего момента — m1 ( mc = 0 ; mG = 0,2mB ; при шарнирном сопряжении mA = 0 ) и расстояние l0 до точки с максимальной ординатой изгибающего момента в свае:
где — коэффициент, определяемый по рис 12.7 или 12.8.
где α — коэффициент, определяемый по рис. 12.7
По рис. 12.7 и 12.8 можно построить прогиб упругой оси сваи.
Максимальный прогиб в уровне головы сваи определяют по формуле
где х — коэффициент, определяемый по рис. 12.7 или 12.8,
а в характерных точках D, Е и G — по формуле
Для характеристики шарнирного сопряжения сваи с ростверком кривые х и θG на рис. 12.7 увеличены соответственно в 5 и 10 раз.
где |Δl| — безразмерная величина заданного перемещения сваи.
В свайных фундаментах с высоким ростверком, когда коэффициент qB > 0,5, максимальное значение поперечной силы следует определять для заглубленной части сваи (точка В на рис. 12.5 и 12.6) по формуле
где qA — коэффициент для сечения А на уровне головы сваи.
Дополнительный изгибающий момент от внецентренного действия вертикальной нагрузки на изогнутую ось сваи (см. рис. 12.5 и 12.6) приближенно вычисляют по следующим зависимостям:
для свай с шарнирным сопряжением с ростверком (в заглубленной части сваи)
для свай с жесткой заделкой голов в ростверк (на уровне заделки)
где N — нормативная вертикальная нагрузка на сваю.
Приведенные (расчетные) максимальные усилия в свае от воздействия горизонтальных перемещений, наклона и ветровой нагрузки, а также от внецентренного действия вертикальной нагрузки находят по выражениям:
При расчете ростверка следует учитывать дополнительные нагрузки, возникающие в заделке свай (точка А на рис. 12,5 и 12.6); эти нагрузки определяются по формулам (12.42) и (12.43). Кроме того, необходимо учитывать усилия от свай, расположенных как под продольными стенами, так и под поперечными.
Решение. Для свайных фундаментов с низким ростверком при = H/l = 0 по рис. 12.7 и 12.8 соответственно для шарнирного сопряжения и жесткой заделки свай определяем коэффициенты β, α и др. (табл. 12.5).
Для свайных фундаментов с высоким ростверком при α = 2/7 = > 0,286 по рис. 12.8 и 12.9 для шарнирного сопряжения предварительно находим коэффициенты β = 28,5 и α = 0,73 и вычисляем по формуле (12.31) при ω = 2,38 и μ = 0,35 значения b = 2,99 м; с = αb = 2,18 м и b + c = 5,17 м; для жесткой заделки — соответственно β = 0,66 и α = 0,57; b = 3,66 м; с = 2,08 м; b + c = 5,74 м.
Определяем уточненные коэффициенты
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Выбор оптимальной длины свай
Рассмотрим варианты когда следует выбирать оптимальную длинну свай, в каких случаях это важно и имеет важное значение. Также мы с Вами рассмотрим типы свай по размерности и сфере их применения.
При проектировании свайного фундамента в расчет принимаются следующие параметры свай:
Определение длины сваи
Глубина залегания твердого грунта определяется геологическими изысканиями. Проектная длина сваи корректируется пробной забивкой, методом испытания свай (динамическим, статическим).
Для определения длины винтовой сваи под легкие постройки иногда бывает достаточно поверхностной диагностики: если в самом низком месте участка на глубине до полуметра начинается плотный песчаный или глинистый грунт, достаточная длина – 2 метра.
Расчетная длина сваи
Наконечник сваи должен опираться на твердый грунт (исключение – висячие сваи). Длина сваи принимается как расстояние от подошвы ростверка до твердого грунта с поправкой на рельеф, после чего проверяется на соответствие условию S ≤ Su (расчетная осадка должна быть меньше предельно допустимой).
Минимальная длина свай
В соответствии со СП 24.13330.2011:
Максимальная длина свай
Зависит от типа свай. В настоящее время в Санкт-Петербурге разрабатывается проект, предполагающий создание фундамента на буронабивных сваях с глубиной погружения 70 м.
Длина винтовых свай
Свая должна входить в грунт на глубину промерзания или больше (т.е. от 1,5 м). Например, в Подмосковье распространенная глубина погружения в загородном строительстве 2-3 метра.
Наибольшая длина цельной сваи двенадцать метров, но это не предел: при необходимости сваю наращивают.
Диаметр конуса от 4,7 см до 32,5 см. Самые тонкие подходят только для легких сооружений (заборов, беседок).
Длина забивных свай
Различают забивные сваи железобетонные, бетонные, деревянные. По форме – круглые, квадратные, тавровые, двутавровые, полые.
Стандартные длины от трех до 16 метров. Минимум для железобетонной сваи:
Можно использовать больше или меньше, их выполняют под заказ. При большой глубине погружения чаще применяются составные сваи, и забивной метод используется редко, обычно комбинированный.
Диаметр ж/б свай до 80 сантиметров, оболочек – до метра.
Длина буронабивных свай
Бурение под сваи обычно осуществляется на глубину от 10 метров (минимум, рекомендуемый СНиП) до 30.
На самых зыбких грунтах, под водой, для строительства особо важных сооружений возможно погружение до 50 метров, но уже с применением обсадных труб.
Наши услуги
Компания «Богатырь» производит забивку свай, шпунта на территории центральной России.
Будем рады ответить на ваши вопросы и готовы к сотрудничеству на взаимовыгодных условиях:
Область применения свайных фундаментов и их составные элементы
Свайные фундаменты широко применяются как в мостостроении, так и в других областях строительства. Эффективность этих фундаментов обусловлена более полным использованием несущей способности грунтового основания и прочности элементов фундамента. Развитие строительной индустрии способствует совершенствованию технологии сооружения свайных фундаментов и существенному снижению экономических затрат.
На рис. 4.1 приведена общая схема свайного фундамента.
Рис. 4.1 Общая схема свайного фундамента |
Область применения свайных фундаментов может определяться грунтовыми условиями, технологическими возможностями, а также экономической целесообразностью. Применение свайного фундамента безусловно оправдано, если основание сложено в верхней своей части слабыми грунтами, а в нижней части более прочными породами. Тогда сваи пронизывают слабые слои грунта и передают нагрузку от сооружения на нижележащие малосжимаемые горизонты.
На местности, покрытой водой при значительной глубине водотока сооружение свайного фундамента может оказаться единственно возможным по технологическим причинам. Возведение массивного фундамента мелкого заложения в таких условиях сопряжено с большими трудностями, тогда как погружение свай с плавсредств и последующее устройство плиты ростверка технологически отработано.
Наконец, нередки случаи, когда имеется возможность устроить как фундамент мелкого заложения, так и свайный фундамент. Тогда разрабатываются проекты обоих вариантов фундаментов и выбор типа фундамента осуществляется по экономическим показателям.
Совершенствование конструкций и технологии сооружения свайных фундаментов является одной из основных задач в области транспортного строительства.
Типы свай
Применяемые в строительстве сваи различаются по нескольким признакам: по материалу, из которого они изготовлены, по своим размерам и форме, по способу устройства в грунте и другим [1]. Следует иметь в виду, что классификации свай претерпевают изменения по мере совершенствования их конструкций и технологии изготовления, появления новых типов свай. Рассмотрим существующие конструкции свай, применяемые в строительстве в настоящее время пользуясь несколькими классификационными признаками.
Сваей-оболочкой называется полый железобетонный или стальной элемент, погружаемый в грунт с открытым нижним концом и выемкой грунта из внутренней полости диаметром 1 … 3 м.
Данные определения отличаются некоторой условностью и не охватывают всего многообразия свайных конструкций. Здесь они приведены для первоначального знакомства со сваями. Итак, рассмотрим наиболее распространенные типы свай.
Прежде всего познакомимся со сваями, погружаемыми в грунт в готовом виде.
Деревянные сваи применяют обычно там, где лес является местным строительным материалом. Готовят их из леса хвойных пород, преимущественно из сосны и лиственницы со здоровой древесиной, диаметром от 18 до 40 см и длиной 4,5–8,5 м. Более длинные бревна дефицитны, и их изготавливают по специальному заказу. Рекомендуется лес зимней рубки с неограниченной влажностью.
Бревна для свай очищают от сучьев, наростов и коры. Естественную коничность бревен обычно сохраняют. Иногда бревна для свай цилиндруют.
Сваи погружают в грунт тонким концом, который заостряют на 3 или 4 грани (рис. 4.2, а, б). Более пологое заострение делают для забивки свай в более плотные грунты. Если в грунтах содержатся твердые включения (гравий, галька и пр.), острие сваи защищают стальным башмаком (рис. 4.2, б), который крепят гвоздями. Заострение выполняют строго по оси, иначе свая при погружении будет уходить в сторону.
Верхний конец (голову) сваи обрезают строго перпендикулярно к продольной оси и укрепляют от размочаливания при забивке стальным кольцом-бугелем из полосы толщиной 12–20 мм и шириной 50–100 мм (рис. 4.2, в).
Бревна в свае можно наращивать. Стык по длине сваи делают не более одного раза, строго в торец и фиксируют стальным штырем по оси бревен и полосовыми или уголковыми накладками длиной 2,5–3 диаметра сваи (рис. 4.2, г). Вместо накладок используют также стальные патрубки (рис. 4.2, д). После погружения свай стыки должны находиться на 2 м ниже уровня возможного размыва, а у смежных свай — быть в разных уровнях с разбежкой по высоте не менее 0,75 м.
Более длинные деревянные сваи (до 25 м) изготавливают пакетными из трех или четырех бревен (рис. 4.2, е) или клеенными водостойкими составами из досок или брусьев (рис. 4.2, ж).
Рис. 4.2 Деревянные сваи (размеры в см) |
Стыковку бревен в пакетных сваях выполняют с разбежкой не менее 1,5 м. Нижний конец пакета бревен защищают общим стальным башмаком, а верхние концы бревен — общим бугелем.
Деревянные сваи дешевы, просты в изготовлении, имеют небольшой вес, что упрощает их транспортировку и погружение в грунт. Однако у них ограничена длина, а потому сравнительно невысокая несущая способность [2]. На изготовление же пакетных свай из бревен расходуется много металла, что сильно удорожает их. Кроме того, деревянные сваи подвержены гниению в условиях переменной влажности. Поэтому в постоянных сооружениях головы деревянных свай располагают ниже самого низкого уровня воды не менее чем на 0,5 м. В морской воде, где имеются вредители древесины (шашень и др.), деревянные сваи не применяют.
Забивные железобетонные сваи сплошного сечения
В мостостроении широко применяют типовые призматические железобетонные сваи квадратного сечения 30´30, 35´35 и 40´40 см с обычной или предварительно напряженной арматурой. Реже используются сваи прямоугольного сечения 25´30, 30´35 и 35´40 [2, 3].
В практике фундаментостроения применяют также трех-, шести- и восьмигранные призматические сваи сплошного сечения.
Мостовые сваи бывают нетрещиностойкие (с допустимым раскрытием трещин не более 0,2 мм), которые изготавливают из обычного железобетона с невысоким процентом армирования из условия прочности их при изгибе от собственного веса во время монтажа. Продольная (рабочая) арматура таких свай состоит из четырех стержней периодического профиля, размещенных в углах сечения сваи. Длина таких свай от 4 до 12 м. Предназначены они для фундаментов с низким ростверком с небольшими горизонтальными нагрузками.
Трещиностойкие мостовые сваи (с допустимым раскрытием трещин не более 0,1 мм) из обычного железобетона класса от В20 до В35 имеют более высокий процент армирования и длину от 4 до 18 м. При этом для более крупных свай применяют более высокий класс бетона и более высокий процент армирования. Рабочая арматура, расположенная в углах сечения таких свай, состоит из 1–3 стержней периодического профиля класса А-II диаметром от 20 до 28 мм (рис. 4.3).
В острие сваи рабочую арматуру сводят в пучок вокруг фиксирующего штыря, а голову сваи усиливают сварными сетками. Шаг поперечной спиральной арматуры у концов сваи, где возникают наибольшие напряжения при забивке, принят меньше, чем по длине ее средней части. Для строповки свай предусмотрены строповочные петли, расположенные в местах по длине сваи из расчета равенства изгибающих моментов от ее собственного веса в точках строповки и в пролете.
Рис. 4.3 Мостовая призматическая железобетонная свая: а — опалубочный чертеж; б — типы армирования свай; в — армирование острия сваи |
Типовые предварительно напряженные сваи сплошного квадратного сечения для фундаментов транспортных сооружений имеют длину от 8 до 20 м. Изготавливают их из бетона класса В35 и армируют либо стержневой арматурой периодического профиля класса А-IV диаметром 12–20 мм, либо высокопрочной проволокой периодического профиля класса Вр‑II диаметром 5 мм. Для высоких ростверков фундаментов мостов используют предварительно напряженные сваи со стержневой арматурой.
Мостовые сваи для обычных климатических условий имеют защитный слой бетона толщиной 30 мм, а в северном исполнении — 50 мм.
В действующих каталогах свай каждому их типоразмеру присвоена своя марка. Например, марке СМ12-35Т4 соответствует свая мостовая (СМ) длиной 12 м сечением 35´35 см, трещиностойкая (Т) с 4-м типом армирования; марке СН-12-35 соответствует свая предварительно напряженная (СН) длиной 12 м сечением 35´35 см.
Основным недостатком сплошных забивных свай является их большая масса, что затрудняет их транспортировку и требует использования тяжелого кранового и сваебойного оборудования. В меньшей степени эти недостатки присущи полым сваям, которые чаще всего делают цилиндрической формы.
Сваи из сборных железобетонных оболочек
Полые железобетонные сваи кольцевого сечения собирают из отдельных секций с наружным диаметром 0,4; 0,6; 1,2; 1,6; 3,0 м, длиной от 4 до 12 м при диаметре от 0,4 до 1,6 м и длиной 6 м при диаметре 3,0 м [1, 3]. Толщина стенок оболочек при диаметре 0,4–0,6 м составляет 8–10 см, а при диаметре 1,2–3,0 — 12 см. В мостостроении применялись также оболочки с толщиной стенок 15–20 см (толстостенные оболочки).
Сваи из оболочек малого диаметра можно смонтировать на полную длину до их погружения. При большом диаметре секции оболочек наращивают по мере их погружения, благодаря чему общая длина свай может достигать 50 м и более. После погружения в грунт полости оболочек заполняют бетоном (иногда армированным), песком или оставляют полыми.
Секции оболочек изготавливают из обычного или предварительно напряженного железобетона из бетона класса В35. Для заполнения полости оболочек используют бетон классов В20 и В25. Продольную арматуру располагают в тонкостенных оболочках посередине толщины стенок в один ряд равномерно по сечению. В толстостенных оболочках принята двухрядная по толщине стенок расстановка продольной арматуры. В оболочках из обычного железобетона используют арматуру периодического профиля класса А-II с диаметром стержней 16–25 мм, а в предварительно напряженных — класса А-IV. Поперечную спиральную арматуру выполняют из проволоки диаметром не менее 6 мм с шагом 10 см, а на концевых участках каждой секции — 5 см. Типовые оболочки из обычного железобетона при одном и том же диаметре могут иметь разный процент армирования: m = 2; 2,5 и 3 % — при диаметре оболочки 0,4 и 0,6 м и m = 1,5; 2,0; 3,0 и 5,0 % — при больших диаметрах. На рис.4.4показан один из типов армирования оболочки диаметром 0,6 м. Типовые оболочки из предварительно напряженного железобетона имеют один и тот же процент армирования (m = 3 %).
Рис. 4.4 Секция железобетонной оболочки: 1 — обечайка; 2 — продольная арматура; 3 — спиральная арматура; 4 — коротыши из арматуры |
Секции оболочек диаметром 0,4–1,6 м изготавливают на центрифугах, а диаметром 3,0 м — в вертикальных виброформах. В сваях их соединяют между собой фланцево-болтовым стыком (рис. 4.5, а) или сварным (рис. 4.5, б). Оболочки из предварительно напряженного железобетона и оболочки диаметром 3,0 м соединяются только на фланцево-болтовых стыках.
Для предохранения от коррозии стыки омоноличивают бетоном на быстротвердеющем цементе, а стыки, располагаемые в грунте, заливают горячим битумом.
Оболочки диаметром 0,4 и 0,6 м обычно погружают с закрытым нижним концом, для чего используют специальные наконечники, присоединяемые к концу нижней секции сваи (рис. 4.6, а). В этом случае взаимодействие оболочки с грунтом в процессе погружения ничем не отличается от свай сплошного сечения.
Оболочки более крупного диаметра погружают с открытым нижним концом, для чего в нижней их части устраивают кольцевой стальной нож(рис. 4.6, б). Для уменьшения сопротивления такой оболочки погружению одновременно с погружением производят выемку грунта у ножа через полость оболочки. При этом грунт вокруг нее не испытывает существенного дополнительного уплотнения, которое совершается при забивке свай с закрытым нижним концом, что сказывается на их несущей способности. В связи с этим несущие элементы свайных фундаментов из оболочек диаметром до 0,6 м называют сваями, а большего диаметра — сваями-оболочками.
Стальные и сталебетонные сваи
Стальные сваи делают из прокатных профилей (двутавров, швеллеров, уголков) или же из сварных или цельнотянутых труб [2]. Для увеличения жесткости стальных свай прокатные профили соединяют с помощью сварки или заклепок в пакеты коробчатого, таврового или крестообразного сечения. Такие сваи можно погружать в грунты, содержащие твердые включения, и пробивать ими тонкие прослойки полускальных грунтов или разрушенные слои скальных.
По затратам металла и сложности изготовления более предпочтительны сваи из стальных труб. Их звенья стыкуют на стеллажах на полную длину, а при длине свай более 25 м — наращивают звеньями в процессе погружения. Стыки делают сварными с накладками (рис. 4.7, а), а нижние концы — глухими (с закрытым наконечником из тех же труб,рис. 4.7, б) или открытыми. Стальные оболочки диаметром более 1 м погружают только с открытым нижним концом с удалением из них грунта. Полость оболочки заполняют бетоном класса В20 или В25 (сталебетонные сваи). Длина таких свай может достигать 50 м.
Рис. 4.7 Элементы конструкции оболочки сталебетонной сваи: а — сварной стык секций; б — глухой стальной наконечник |
Недостатком стальных свай является большой расход металла и подверженность коррозии. Скорость коррозии стали под водой составляет 0,014–0,05 мм/год, а в зоне переменной влажности может достигать 0,4–0,5 мм/год. Для защиты свай от коррозии их поверхность покрывают асфальтовыми красками или каменно-угольной смолой.
Винтовая свая (рис. 4.8) состоит из стального или железобетонного ствола и стального или чугунного башмака, снабженного винтовыми лопастями.
Винтовой башмак сваи делают литым или сварным. Винтовая лопасть имеет длину 1,25–1,5 оборота и диаметр, равный 3–4,5 диаметра ствола сваи. Шаг лопасти при диаметре ствола d £ 60 см назначают равным (0,6–0,8)d, а при большем диаметре — (0,35–0,4)d.
Погружают винтовые сваи путем их завинчивания специальными механизмами-кабестанами. Погружение возможно в вертикальном и наклонном положениях в несвязные и связные грунты, в том числе с включением валунов размером менее шага винтовой лопасти. В практике строительства применялись винтовые сваи с диаметром лопасти 3,0 м длиной до 50 м. Винтовая лопасть увеличивает опорную площадь нижнего конца сваи, что существенно увеличивает ее несущую способность. Кроме того, винтовые сваи за счет той же лопасти способны воспринимать значительные выдергивающие нагрузки, а потому их можно использовать как анкерные.
Набивные и буровые сваи
Этот тип свай изготавливается непосредственно на месте строительства [1, 2, 3]. Для сооружения сваи в грунте предварительно устраивается скважина методом бурения или пробивки.
Пробивка скважина выполняется без выемки грунта из ее полости и, следовательно имеет место уплотнение грунта в прискважинной зоне. Скважина заполняется бетонной смесью порциями с уплотнением и вдавливанием ее в грунт. В результате образуется рифленая поверхность, обеспечивающая повышенное сцепление сваи с грунтом (рис. 4.9, а). Такие сваи называются набивными. К этому типу относятся сваи Франки, частотрамбованные сваи, сваи Симплекса, Стерна и др. (рис. 4.9, б).