Что называется спектром сигнала
Спектр сигнала
Спектр сигнала — в радиотехнике это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используются преобразование Фурье, разложение по функциям Уолша, вейвлет-преобразование и др.
Содержание
Базисные функции
В радиотехнике в качестве базисных функций используют синусоидальные функции. Это объясняется рядом причин:
Кроме гармонического ряда Фурье применяются и другие виды разложений: по функциям Уолша, Бесселя, Хаара, Лежандра, полиномам Чебышева и др.
В цифровой обработке сигналов для анализа применяются дискретные преобразования: Фурье, Хартли, вейвлетные и др.
Применение
Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.
На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.
Математическое представление
Если под сигналом понимать электрическое напряжение на резисторе сопротивлением 1 Ом, то спектр этого сигнала можно записать следующим образом:
, где — угловая частота равная .
Спектр сигнала является комплексной величиной и представляется в виде: , где — амплитудно-частотная характеристика сигнала, — фазо-частотная характеристика сигнала.
Энергия сигнала, выделяемая на резисторе, будет равна , средняя мощность — .
Спектр (электричество)
Спектр (электричество)
Содержание
Базисные функции
В радиотехнике в качестве базисных функций используют синусоидальные функции. Это объясняется рядом причин:
Кроме гармонического ряда Фурье применяются и другие виды разложений: по функциям Уолша, Бесселя, Хаара, Лежандра, полиномам Чебышева и др.
В цифровой обработке сигналов для анализа применяются дискретные преобразования: Фурье, Хартли, вейвлетные и др.
Применение
Разложение сигнала в спектр применяется в анализе прохождения сигналов через электрические цепи (спектральный метод). Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее: сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, модулирование, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причём для линейных цепей верен принцип суперпозиции: действие на систему сложного сигнала, который состоит из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определённой частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.
На практике спектр измеряют при помощи специальных приборов: анализаторов спектра.
Математическое представление
Если под сигналом s(t) понимать электрическое напряжение на резисторе сопротивлением 1 Ом, то спектр этого сигнала S(ω) можно записать следующим образом:
Спектральное представление сигналов
Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.
Спектр сигнала — это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами.
Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.
Различают два вида спектральных диаграмм:
— спектральная диаграмма амплитуд;
— спектральная диаграмма фаз.
В спектральной диаграмме амплитуд — отображаются все составляющие со своими амплитудами и частотами.
В спектральной диаграмме фаз — отображаются все составляющие со своими начальными фазами и частотами.
Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.
Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий — составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз — начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.
Спектральное представление периодических сигналов
1. Гармоническое колебание.
Математическая модель гармонического колебания имеет вид:
Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным.
2. Периодические, негармонические сигналы.
Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:
т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.
Преобразуем данный ряд, используя тригонометрическое свойство
sin(x+y) = sin x cos y + cos x sin y (13)
Полагая что x=?k и y=k?ct получим:
Тогда ряд примет вид:
Параметры ряда можно определить через коэффициенты ak и bk:
Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):
б) значение постоянной составляющей:
в) частоту первой гармоники спектра, которая равна частоте сигнала:
г) амплитуды гармонических составляющих спектра:
Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода.
3. Непериодические сигналы.
Поскольку в непериодических сигналах нельзя выделить период, т. к. Т. то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.
Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).
Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:
Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье.
Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:
Вопрос 1. Общие сведения о спектре сигнала
В радиотехнических устройствах протекают электрические процессы, имеющие специфический характер. Реальный радиотехнический сигнал как физический объект аналитического и практического исследований достаточно сложен. Чтобы провести анализ прохождения сигнала через радиотехнические цепи, необходимо его представить в удобной математической форме. В теории сигналов широкое применение нашли два способа математического и физического представления электрических сигналов: временной и спектральный. При временном способе анализа сигнал отражают непрерывной функцией времени или совокупностью элементарных импульсов, следующих друг за другом через определенные интервалы времени. Спектральный способ основан на представлении (аппроксимации) сигнала в виде суммы гармонических составляющих разных, обычно кратных друг другу частот.
Анализ процессов в электрических цепях главным образом зависит от сложности формы поступающих на них сигналов. В этих случаях часто становится эффективным спектральное представление сигналов. Фундаментальная идея такого представления принадлежит Ж. Фурье. Для периодических сигналов Фурье ввел разложение по различным видам рядов — тригонометрическим, гармоническим, комплексным и т.д. Фурье также доказал, что непериодические (импульсные) сигналы можно описать с помощью двух его преобразований — прямого и обратного.
Рис.1 Амплитуда сигнала
Итак, практически любой сигнал можно представить в виде суммы гармонических составляющих (спектра), амплитуды и частоты которых можно определить с помощью прямого преобразования Фурье. Этот спектр гармонических составляющих за
частую удобно отобразить графически, если по оси абсцисс откладывать обозначение частот, а по оси ординат — величины амплитуд гармоник. На рис. 1 наглядно показано временное и спектральное представление достаточно сложного по форме сигнала. Анализ спектра включает определение как амплитуд гармоник (спектра амплитуд), так и их начальных фаз (спектра фаз). Однако для многих практических задач достаточно знать лишь спектр амплитуд. Поэтому под анализом спектра принято понимать определение амплитуд гармоник исследуемого сигнала.
Автоматическое представление спектра сигналов осуществляют специальными приборами — анализаторами спектра.
Анализаторы спектра электрических сигналов классифицируют следующим образом:
• по способу анализа — последовательные, параллельные (одновременные) и смешанные;
• по диапазону частот — низкочастотные, высокочастотные, сверхвысокочастотные, широкодиапазонные.
Основными характеристиками анализаторов являются: разрешающая способность, время анализа и погрешности измерения частоты и амплитуды.
Для спектрального анализа непериодических сигналов (функций) используют аппарат интегрального преобразования Фурье. При этом применяют известную формулу прямого преобразования Фурье, характеризующую спектральную плотность непериодического (импульсного) сигнала
Иными словами, текущая спектральная плотность зависит от времени анализа и форма текущего спектра в общем случае отличается от истинного тем больше, чем меньше Та. Отличие текущего спектра от спектра закончившегося процесса зависит от того, проявились ли за время анализа Та все характерные особенности сигнала. Если исследуемый анализатором электрический сигнал — периодический с периодом следования Т, то необходимо, выполнение условия: Та» Т.
При измерении спектра нижний предел времени анализа является конечным, т.е. интегрирование (усреднение) проводится в интервале от 0 до Та. За счет этого возникает методическая погрешность определения составляющих спектра, связанная с методом измерений. Эта погрешность для ряда технических применений не играет особой роли, но в некоторых случаях ее необходимо учитывать и исследовать.
Приборы, применяемые для анализа спектра сигналов, можно разделить на аналоговые и цифровые. Несмотря на многие достоинства цифровых анализаторов, аналоговые анализаторы еще широко используют, особенно в верхней части высокочастотного и СВЧ-диапазонов. Современные аналоговые анализаторы спектров содержат и цифровые устройства. Практически во всех аналоговых анализаторах выделение гармонических составляющих сигнала производится узкополосными фильтрами. Этот метод реализуют двумя способами: параллельного и последовательного анализа сигнала. Основным элементом таких приборов является полосовой фильтр (высокодобротный резонатор) с узкой полосой пропускания, который выделяет отдельные составляющие или узкие диапазоны частот исследуемого спектра.
Что называется спектром сигнала
Введение
Рисунок 1-1. Сложный сигнал во временной области
Некоторые измерения требуют получения полной информации о сигнале – частоты, амплитуды и фазы. Такого рода анализ называется векторным анализом сигнала и рассматривается в документе Agilent Application Note 150-15, Vector Signal Analysis Basics. Современные анализаторы спектра способны проводить различного рода векторные измерения сигнала. Однако, другая обширная группа измерений не включает определения фазовых соотношений между синусоидальными составляющими. Такой тип анализа сигнала называется спектральным анализом. Поскольку спектральный анализ более прост для понимания и одновременно необычайно полезен на практике, мы сперва рассмотрим то, как анализаторы спектра осуществляют измерения для спектрального анализа, начиная с Главы 2.
Теоретически, чтобы осуществить преобразование из временной области в частотную область, сигнал должен быть оценен на всем промежутке времени, то есть до ± бесконечности. Однако, на практике мы всегда ограничиваемся каким-то конечным периодом, когда проводим измерение. Преобразование Фурье также может быть осуществлено и из частотной области во временную. В этом случае, опять же, теоретически нам надо знать все спектральные составляющие в диапазоне частот до ± бесконечности. На самом же деле, производя измерения только в той области частот, в которой содержится наибольшая часть энергии сигнала, можно получить вполне приемлемые результаты. При преобразовании Фурье из частотной области очень важно знать фазу индивидуальных составляющих. Например, прямоугольный периодический сигнал, переведенный в частотную область и обратно, может превратиться в пилообразный, если не были зафиксированы фазы.
Что такое спектр?
Так чем же является спектр в контексте нашего обсуждения? Спектр – это набор синусоидальных волн, которые, будучи надлежащим образом скомбинированы, дают изучаемый нами сигнал во временной области. На Рис. 1-1 показана волновая форма сложного сигнала. Давайте предположим, что мы ожидали увидеть чисто синусоидальный сигнал. И хотя форма явно демонстрирует нам, что сигнал не является чистой синусоидой, она не дает определенного ответа на вопрос о причинах данного явления. На Рис. 1-2 показан наш сложный сигнал во временной и в частотной области. В частотной области показана амплитуда для каждой синусоидальной волны в спектре в зависимости от частоты. Как видно, в данном случае спектр состоит лишь из двух волн. Теперь мы знаем, отчего наш сигнал не является чистой синусоидой: в нем содержится еще одна волна, вторая гармоника в нашем случае. Означает ли это, что измерения во временной области можно вообще не проводить? Отнюдь. Временная область является предпочтительной для многих измерений, а для некоторых является единственно возможной. К примеру, только во временной области можно измерить длительность фронта и спада импульса, выбросы и биения.
Рисунок 1-2. Связь между временной и частотной областью
Рисунок 1-3. Тест передатчика на гармонические искажения
Рисунок 1-4. Радиосигнал GSM и спектральная маска, показывающая границу нежелательных выбросов
Рисунок 1-5. Двухтоновый тест радиочастотного усилителя мощности
Рисунок 1-6. Выбросы излучения и их ограничения по стандарту CISPR11 как часть теста на электромагнитную совместимость
Типы измерений
Чаще всего анализаторами спектра измеряют частоту, мощность, модуляцию, искажения и шум. Знание спектрального состава сигнала очень важно, особенно в системах с полосой частот ограниченной ширины. Переданная мощность также является важным измеряемым параметром. Слишком малая мощность означает, что сигнал не сможет достичь точки назначения. Слишком большая мощность может быстро истощить заряд батарей, создать искажения и чрезмерно повысить рабочую температуру системы.
Измерение качества модуляции может быть важным для того, чтобы обеспечить нормальную работу системы и быть уверенным в том, что информация передается корректно. Измерения коэффициента модуляции, уровня полосы боковых частот, качества модуляции и заполнения полосы частот – это примеры самых распространенных тестов при аналоговой модуляции. В случае цифровой модуляции измеряются модуль вектора погрешности, дисбаланс IQ, зависимость погрешности фазы от времени и ряд других параметров. Более подробно об этих видах измерений рассказано в документе Agilent Application Note 150-15, Vector Signal Analysis Basics.
В сфере коммуникаций и связи измерение искажений очень важно как для приемников, так и для передатчиков. Излишние гармонические искажения на выходе передатчика могут создавать помехи на других коммуникационных частотах. В блоках предусилителей приемника не должно быть интермодуляции, чтобы избежать перекрестного наложения сигнала. Хороший пример – интермодуляция несущих сигналов кабельного телевидения, которые при распространении по распределительной системе вносят искажения в другие каналы этого же кабеля. Распространенными измерениями искажений являются измерения интермодуляции, гармоник и паразитного излучения.
Часто бывает нужно измерить и шум как сигнал. Любая активная цепь или устройство будет генерировать шум. Измерения коэффициента шума и отношения сигнал/шум (С/Ш) являются важными для описания показателей устройства и его вклада в общие показатели системы.
1 Жан Батист Фурье, 1768 – 1830, французский математик и физик, открывший, что периодические функции могут быть представлены последовательностью синусов и косинусов.
2 Если же сигнал появляется лишь раз, то его спектральным представлением будет непрерывное множество синусоидальных волн.
Страница: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16