Что называется прямолинейным равномерным движением приведите примеры
Равномерное прямолинейное движение
теория по физике 🧲 кинематика
Равномерное прямолинейное движение — это такое движение, при котором тело совершает за любые равные промежутки времени равные перемещения.
Скорость при прямолинейном равномерном движении
Если тело движется равномерно и прямолинейно, его скорость остается постоянной как по модулю, так и по направлению. Ускорение при этом равно нулю.
Векторный способ записи скорости при равномерном прямолинейном движении:s — вектор перемещения, ΔR— изменение радиус-вектора, t — время, а ∆t — его изменение. Проекция скорости на ось ОХ: sx — проекция перемещения на ось ОХ, ∆x — изменение координаты точки (ее абсциссы). Знак модуля скорости зависит от направления вектора скорости и оси координат:
Основная единица измерения скорости — 1 метр в секунду. Сокращенно — 1 м/с.
Спидометр — прибор для измерения модули скорости тела.
График зависимости скорости от времени представляет собой прямую линию, перпендикулярную оси скорости и параллельную оси времени. Выглядит он так:
Чтобы сравнить модули скоростей на графике, нужно оценить их удаленность от оси времени. Чем дальше график от оси, тем больше модуль.
Пример №1. Найти модуль скорости и направление движения тела относительно оси ОХ. Выразить скорость в км/ч.
График скорости пересекает ось в точке со значением 10. Единица измерения — м/с. Поэтому модуль скорости равен 10 м/с. График лежит выше оси времени. Это значит, что тело движется по направлению оси ОХ. Чтобы выразить скорость в км/ч, нужно перевести 10 м в километры и 1 с в часы:
Теперь нужно разделить километры на часы:
Перемещение и координаты тела при равномерном прямолинейном движении
Геометрический смысл перемещения заключается в том, что его модуль равен площади фигуры, ограниченной графиком скорости, осями скорости и времени, а также линией, проведенной перпендикулярно оси времени.
При прямолинейном равномерном движении эта фигура представляет собой прямоугольник. Поэтому модуль перемещения вычисляется по следующей формуле:
Вектор перемещения равен произведению вектора скорости на время движения: Внимание!
При равномерном прямолинейном движении путь и перемещение совпадают. Поэтому путь, пройденный телом, можно найти по этим же формулам.
Формула проекции перемещения:
График проекции перемещения
График проекции перемещения показывает зависимость этой проекции от времени. При прямолинейном равномерном движении он представляет собой луч, исходящий из начала координат. Выглядит он так:
Чтобы по графику проекции перемещения сравнить модули скоростей, нужно сравнить углы их наклона к оси sx.Чем меньше угол, тем больше модуль. Согласно рисунку выше, модули скорости тел, которым соответствуют графики 1 и 3, равны. Они превосходят модуль скорости тела 2, так как их угол наклона к оси sx меньше.
График координаты
График координаты представляет собой график зависимости координаты от времени. Выглядит он так:
Так как график координаты представляет собой график линейной функции, уравнение координаты принимает вид :
Чтобы сравнить модули скоростей тел по графику координат, нужно сравнить углы наклона графика к оси координат. Чем меньше угол, тем больше модуль скорости. На картинке выше наибольший модуль скорости соответствует графику 1. У графиков 2 и 3 модули равны.
Чтобы по графику координат найти время встречи двух тел, нужно из точки пересечения их графиков провести перпендикуляр к оси времени.
Пример №2. График зависимости координаты тела от времени имеет вид:
Изучите график и на его основании выберите два верных утверждения:
На участке 1 координата растет, и ее график представляет собой прямую. Это значит, что на этом участке тело движется равномерно (с постоянной скоростью). На участке 2 координата с течением времени не меняется, что говорит о том, что тело покоится. Исходя из этого, верными утверждениями являются номера 1 и 3.
Пример №3. На рисунке изображен график движения автомобиля из пункта А (х=0 км) в пункт В (х=30 км). Чему равна минимальная скорость автомобиля на всем пути движения туда и обратно?
Согласно графику, с начала движения до прибытия автомобиля в пункт 2 прошло 0,5 часа. А с начала движения до возвращения в пункт А прошло 1,5 часа. Поэтому время, в течение которого тело возвращалось из пункта В в пункт А, равно:
Туда и обратно автомобиль проходил равные пути, каждый из которых равен 30 км. Поэтому скорость во время движения от А к В равна:
Скорость во время движения от В к А равна:
Минимальная скорость автомобиля на всем пути движения составляет 30 км/ч.
На рисунке представлены графики зависимости пройденного пути от времени для двух тел. Скорость второго тела v2 больше скорости первого тела v1 в n раз, где n равно…
Алгоритм решения
Решение
Рассмотрим графики во временном интервале от 0 до 4 с. Ему соответствуют следующие данные:
Скорость определяется формулой:
Так как начальный момент времени и скорость для обоих тел нулевые, формула примет вид:
Скорость первого тела:
Скорость второго тела:
Отношение скорости второго тела к скорости первого тела:
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке приведён график зависимости координаты тела от времени при прямолинейном движении тела по оси Ox.
Алгоритм решения
Уравнение координаты при равномерном прямолинейном движении имеет вид:
Отсюда проекция скорости равна:
Начальная координата xo = 10 м, конечная x = –10 м. Общее время, в течение которого двигалось тело, равно 40 с.
Вычисляем проекцию скорости:
Этому значению соответствует график «в».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Весь график можно поделить на 3 участка:
По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:
Записываем формулу искомой величины:
s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.
s1и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:
Теперь рассчитаем пути s1и s2, а затем сложим их:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Равномерное прямолинейное движение тела – формулы с примерами и определение темы кратко
Самое простое движение, которое изучает кинематика, — это равномерное прямолинейное движение. В обычных земных условиях такое движение встречается довольно редко, однако в космическом пространстве, вдалеке от больших небесных тел, этот вид движения распространён гораздо шире. Кратко рассмотрим эту тему, приведём формулу равномерного прямолинейного движения.
Равномерное прямолинейное движение
Уже из названия можно увидеть две главных особенности изучаемого явления.
Рис. 1. Скорость движения в физике
Равномерность движения состоит в том, что это отношение будет одним и тем же, независимо от того, какой отрезок времени был взят для его измерения.
Например, если измерять путь, пройденный автомобилем на разных участках движения в разных промежутках времени, можно получить следующую таблицу:
Заметим, что отрезок времени в последней строке таблицы составляет 1 час. И путь, пройденный за это время, равен 70 км. То есть в данном случае автомобиль движется равномерно со скоростью 70 километров в час.
Вторая важная особенность рассматриваемого типа движения — его прямолинейность: траектория такого движения представляет собой прямую. А в этом случае очень удобной оказывается система отсчёта с одной координатной осью, параллельной этой прямой. Траектория совпадёт с осью, и расстояние, пройденное материальной точкой, может непосредственно отсчитываться с оси по координатам.
Примеры прямолинейного равномерного движения представлены на рисунке:
Рис. 2. Примеры равномерного прямолинейного движения
Уравнение равномерного прямолинейного движения
График равномерного прямолинейного движения
Из вида полученной формулы следует, что зависимость координаты от времени — прямая зависимость.
Рис. 3. График координаты равномерного прямолинейного движения.
Что мы узнали?
Равномерное прямолинейное движение — это движение, траектория которого представляет собой прямую, скорость которого постоянна. Для описания такого движения в физике используется система отсчёта с одной координатной осью, а графиком координаты движения является прямая.
Равномерное движение
Равномерное движение
Для кинематического описания движения расположим ось OХ вдоль направления движения. Для определения перемещения тела при равномерном прямолинейном движении достаточно одной координаты Х. Проекции перемещения и скорости на координатную ось можно рассматривать, как алгебраические величины.
В зависимости от направления оси и направления движения тела эта величина может быть как положительной, так и отрицательной. При прямолинейном и равномерном движении модуль перемещения тела совпадает с пройденным путем. Скорость равномерного прямолинейного движения определяется по формуле:
Математическое описание равномерного прямолинейного движения
Закон движения тела при равномерном прямолинейном движении описывается линейным алгебраическим уравнением.
Уравнение движения тела при равномерном прямолинейном движении
От точки x 1 до точки x 2 тело переместилось за две секунды. Перемещение тела составило три метра.
Зная это, можно найти скорость тела.
Есть еще один способ определения скорости: из графика ее можно найти как отношение сторон BC и AC треугольника ABC.
Аналогично вычисления проводятся для второго случая движения. Рассмотрим теперь новый график, изображающий движение с помощью отрезков прямых. Это так называемый кусочно-линейный график.
Отметим, что путь и перемещение не совпадают для движения, описываемого кусочно-линейным графиком. Например, в интервале времени от нуля до семи секунд тело прошло путь, равный 8 метрам. Перемещение тела при этом равно нулю.
Общие сведения
Под движением в физике понимают изменение координат тела относительно других объектов с течением времени. Раздел, который изучает происходящее, называется кинематикой. Эта наука исследует только процессы перемещения, не беря во внимание причин его вызвавшего. Часто за тело принимается материальная точка, физическими размерами которой пренебрегают. Это возможно, так как любой объект можно рассматривать как совокупность связанных точек.
Систему, состоящую из неподвижных относительно друг друга тел, можно рассматривать как начало отсчёта при движении. Для этого составляется группа уравнений, которые определяют, как изменяется положение перемещающейся точки с течением времени. Другими словами, определяют координаты тела для любого момента. Называют их уравнениями движения. В декартовых координатах система выглядит так: x = f1 (t); y = f2 (t); z = f3 (t).
Существуют следующие виды движения:
Все эти изменения положения в пространстве отличаются по виду скорости, ускорения и принципа смены координат. Линия, по которой перемещается материальная точка, называется траекторией движения. По сути, это пройденный телом путь. При криволинейном перемещении, в отличие от прямолинейного, модуль движения всегда будет превышать путь. Это связано с тем, что расстояние, пройденное по дуге всегда будет больше стягивающей хорды.
Рассматривая перемещающиеся тела через одинаковые временные промежутки, можно выделить равномерные и неравномерные движения. Кроме этого, существуют перемещения тела параллельно самому себе — поступательные. Криволинейное движение можно рассматривать как самостоятельный вид изменения положения, а можно свести его к сумме движений по дугам окружностей с различными радиусами кривизны.
При исследовании движения часто измеряют быстроту смены положения, то есть скорость. Если моменту времени соответствует радиус-вектор движущегося тела, то за малый промежуток времени материальная точка переместится на расстояние: Δs = Δr = r2 — r1. Но для характеристики перемещения используют не саму скорость, а её среднее значение: Vср = Δs / Δt.
Принцип исследования перемещения
Для того чтобы изучить движение тела в пространстве, нужно выбрать систему отсчёта. Пусть имеется тело, находящееся в точке А. Через некоторое время оно переместилось в точку В. Эти две координаты можно соединить прямым отрезком, являющимся вектором перемещения S. Так как известно, где находилось тело вначале и S, то можно определить его положение в любое время вне зависимости от вида передвижения тела.
В механике работают не с самим вектором, а его проекцией. Поэтому для исследования изменения положения нужно выбрать систему координат. За неё принимаются оси ординаты и абсциссы. Тогда начальное положение можно задать как X0 и Y0, а конечное X, Y. Решение основной задачи механики заключается в возможности указать положение в любой момент времени. То есть найти x (t) и y (t). Для этого понадобится знать X0 и Y0.
Эти значения являются фиксированными и не зависят от времени. Совершённое перемещение можно описать как раз с помощью проекции разности конца положения и начала: X — X0 = Sx; Y — Y0 = Sy. Отсюда можно вывести фундаментальное правило нахождения изменения положения для любой точки времени:
Таким образом, чтобы исследовать прямолинейное равномерное движение, нужно решить систему уравнений, а для этого необходимо знать начальное положение и изменение проекции перемещения тела с течением времени на координатную ось.
Под равномерным движением понимается перемещение, когда тело за любые промежутки времени проходит равное расстояние. Прямолинейным оно является тогда, когда точка проходит путь по прямой линии. Значит, если за любые равные промежутки времени тело, совершает одинаковое перемещение, то пройденный путь называют РПД (равномерно-прямолинейным). Например, за Δ t равное единице тело преодолеет расстояние равное S1, за Δt2 соответственно S2. Получается, что вектор перемещения материальной точки всегда направлен в одну сторону и имеет один и тот же модуль.
Следует отметить, что характеристикой такого изменения положения является скорость РПД. Для её определения используется отношение вектора перемещения точки к времени, за которое оно произошло: V = S / t, При этом в формуле время может иметь любое значение. Оно является скалярной величиной и неизменным. Значит, скорость РПД можно описать постоянным вектором, сонаправленным с перемещением вектора расстояния.
Нахождение вектора
Чтобы решить главную задачу механики относительно РПД, нужно воспользоваться формулой для нахождения вектора скорости. Из этого определения следует, что S = V * t. Известно, что если имеется соотношение векторов, то его же можно использовать для их проекций на координатные оси. Значит, Sx = Vx * t и Sy = Vy * t. Следовательно, если известны проекции скорости, то можно определить и вектор проекции перемещения в любое время. Отсюда следует, что решение основной задачи для РПД будет иметь вид:
Эти два уравнения всегда нужно рассматривать в совокупности, так как положение тела задаётся на плоскости двумя координатами. Но на самом деле такой системой пользоваться не очень удобно. Поэтому на практике применяют упрощённое выражение.
Икс и игрек нулевые зависят от значений координат. Формула изменит вид в зависимости от того, какие выбрать за начальные. Так, выражение значительно упростится, если вектор скорости будет направлен вдоль одной из координатных осей. В результате тело будет лежать на одной из них в начальный момент.
Например, пусть это будет ось икс. Если её расположить так, что она будет размещена параллельно вектору скорости, то ось игрек будет ему перпендикулярна. Смещая координатные оси, точку начального положения можно поместить на ось абсциссы. Для такой повёрнутой системы совокупность уравнений РПД будет также справедливым. Но игрек начальный для рассматриваемой системы будет равняться нулю. Ему же будет равна и проекция скорости на ординату. Учитывая это система главных выражений примет вид:
Фактически получился частный случай общего вида решения основной задачи механики. Так как второе уравнение никакой информации не даёт (тождественный ноль), то его можно убрать. Отсюда следует, что РПД рационально описывать, направляя координатную ось вдоль вектора скорости и выбирать начальное положение точки на координатной прямой.
Тогда получается упрощённый вариант главной формулы: x (t) = x0 + Vx + t. При этом направление вектора скорости значение не имеет. По нему он может как совпадать с осью, так и быть ей противоположным. Нужно отметить, что Vx является проекцией и может быть положительной или отрицательной величиной. В первом случае тело движется вдоль координатной прямой, а во втором в противоположном её направлении.
Решение задач
Физика — это наука, которая позволяет не только знать какие-либо законы и определения, но и учит использовать их на практике. Самостоятельное решение примеров позволяет закрепить имеющиеся знания. Существуют типовые задания, с помощью которых можно проработать изученный материал. Вот некоторые из них:
Таким образом, решение задач на ПРД требует логического мышления и знания нескольких формул. Кроме этого, можно использовать и графическое описание, то есть изображать график движения тела на координатной плоскости. Для этого в формулу подставляют значения и строят по результатам зависимость.
Равномерное прямолинейное движение
1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.
Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.
2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.
Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.
Если за время \( t \) тело совершило перемещение \( \vec \) , то скорость его движения \( \vec >
3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.
Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.
4. Зависимость координаты от времени можно представить графически.
Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: \( x \) = 4 м/с · \( t \) . Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).
Для того чтобы её построить, необходимо иметь две точки: одна из них \( t \) = 0 и \( x \) = 0, а другая \( t \) = 1 с, \( x \) = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.
Если в начальный момент времени координата тела \( x_0 \) = 2 м, а проекция его скорости \( v_x \) = 4 м/с, то уравнение движения имеет вид: \( x \) = 2 м + 4 м/с · \( t \) . Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой \( t \) = 0, \( x \) = 2 м (рис. 14).
В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \( x \) = 2 м – 4 м/с · \( t \) . График зависимости координаты такого движения от времени представлен на рисунке 15.
Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.
График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.
5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.
Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.
При решении задачи целесообразно придерживаться следующей последовательности действий:
Применим эту последовательность действий к приведённой выше задаче.
Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь
Система отсчёта связана с Землёй, ось \( Ox \) направлена в сторону движения первого тела, начало отсчёта координаты — т. \( O \) — положение первого тела в начальный момент времени.
Начальные условия: \( t \) = 0; \( x_ <01>\) = 0; \( x_ <02>\) = 270.
Уравнения для каждого тела с учётом начальных условий: \( x_1=v_1t \) ; \( x_2=l-v_2t \) . В месте встречи тел \( x_1=x_2 \) ; следовательно: \( v_1t=l-v_2t \) . Откуда \( t=\frac
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?
1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с
2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?
1) 0,25 м
2) 6 м
3) 10 м
4) 150 м
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)
5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен
1) 20 м
2) 40 м
3) 80 м
4) 160 м
6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен
1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с
7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости \( v_1 \) , \( v_2 \) и \( v_3 \) движения этих тел.
8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?
9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?
1) 9,8 м
2) 6 м
3) 4 м
4) 2 м
10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид
1) \( x=1t \) (м)
2) \( x=2+3t \) (м)
3) \( x=2-1t \) (м)
4) \( x=4+2t \) (м)
11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.
ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость
ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит
12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.
1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось
Часть 2
13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?