Что называется профилем доменной печи

Конструкция и расчет профиля доменной печи

Что называется профилем доменной печи

Министерство образования и науки Республики Казахстан

Факультет металлургии, машиностроения и транспорта

КОНСТРУКЦИЯ И РАСЧЕТ ПРОФИЛЯ ДОМЕННОЙ ПЕЧИ

Методические указания к изучению курса по дисциплине

«Технология металлургического производства»

Рекомендовано ученым советом ПГУ им. С. Торайгырова

кандидат технических наук, профессор

К65 Конструкция и расчет профиля доменной печи. Методические указания к изучению курса по дисциплине «Технология

. – Павлодар: ПГУ им. С. Торайгырова, 2007. – 33 с.

В методическом указании приводятся общие сведения по конструкции профиля доменной печи и основные способы расчета профиля доменной печи.

Методическое указание разработано в соответствии с государственным стандартом специальности 050709 «Металлургия» ГОСО РК 3.08.335 – 2006.

ББК 34.323-5я7

©Павлодарский государственный университет

им. С. Торайгырова, 2007

Значительные достижения металлургической науки в последние годы обусловлены использованием современных методов исследования и контроля, позволивших значительно углубить представления о металлургических процессах. Представить сущность процессов, протекающих при металлургическом переделе железных руд, невозможно без использования современных знаний в области физической химии, кристаллографии, физики твердого тела, теплофизики, газодинамики и других фундаментальных дисциплин.

История развития профиля доменной печи берет начало от домниц ХIV века, рабочее пространство которых представляло собой два усеченных конуса, сложенных широкими основаниями. Первые доменные печи ХV века мало отличались от домниц, за исключением несколько большей высоты – от 4,5 до 6,5 м при диаметре распара 2 – 3 м и горна 0,7 – 0,8 м. Температура в нижней части печи в то время уже составляла 1350–1450 0С, а содержание FeO в шлаке 3 – 6 %. В этих условиях выгорание углерода из железа под шлаком было сведено к минимуму – продуктом плавки сделался исключительно чугун. В дальнейшем были, изобретены эффективные способы передела чугуна в сталь и процесс получения стали из руды сделался двухступенчатым с чугуном в виде промежуточного продукта передела.

Доменная печь была изобретена не каким-либо лицом, она явилась плодом коллективного творчества многих поколении металлургов, осуществивших многовековой переход от примитивных сыродутных горнов к домницам и, наконец, к доменным печам.

Современная доменная печь (название от старославянского «дмение» – «дутьё»)- это непрерывно работающий агрегат шахтно­го типа, течение процесса в котором основано на противотоке шихтовых материалов и горячих газов. Несмотря на кратковре­менность пребывания газов в печи, тепловой коэффициент их полезного действия, равный 85 – 87%, является одним из луч­ших для металлургических объектов.

Особенностью современного доменного производства в ми­ровой практике является значительное увеличение единичной мощности агрегатов с одновременным совершенствованием конструкций и оборудования, как самих доменных печей, так и вспомогательных сооружений.

В настоящее время в СНГ работают печи полезным объе­мом до 5000 м3, намечается ввод печей объемом до 5500 м3 с избыточным давлением газа на колошнике до 245 кПа, температурой горячего дутья 1350 – 1400°С, обогаще­нием его кислородом до 35% и использованием различных ви­дов добавочного топлива. Увеличение абсолютного расхода шихтовых материалов и количества чугуна (достигающего в настоящее время 10000, а в будущем 13000 – 14000 т/сут) обус­ловило большие изменения в конструктивных решениях всего комплекса доменного производства.

1 Профиль доменной печи

1.1 Общее понятие о профиле

Очертание рабочего пространства доменной печи в верти­кальном осевом сечении, ограниченного огнеупорной кладкой, называется профилем. Поскольку разгар футеровки начинается с момента ввода печи в эксплуатацию, профиль ее не является постоянным.

Следует различать профили проектный (расчетный) и ра­бочий, стабилизирующийся в зависимости от условий работы и конструктивных особенностей печи, в том числе от системы ох­лаждения. Рабочий профиль как очертание «рабочего простран­ства» печи иногда значительно отличается от проектного.

Это не исключает влияния последнего на ход доменной пе­чи и технико-экономические показатели ее работы. Чем пра­вильнее расчет профиля печи, тем лучше использование хими­ческой и физической энергии газов, ровнее ход печи, равномер­нее разгар футеровки и больше стабильность соотношений ос­новных размеров рабочего и проектного профилей. При нерав­номерном разгаре футеровки, т. е. при искажении профиля, производительность печи снижается, а расход кокса увеличива­ется. В этой связи важно не только найти целесообразный про­ектный профиль, но и следить постоянно в процессе эксплуата­ции за его «чистотой» и относительной равномерностью раз­гара.

Сочетание этих условий дает возможность получить так на­зываемый «рациональный профиль», обеспечивающий быстрое достижение после задувки печи проектных показателей и боль­шую ее производительность для данных конкретных условий производства.

1.2 Основные размеры профиля и его составные части

Верхняя кромка воронки большого конуса

Уровень чугунной летки

Кромки большого конуса

Что называется профилем доменной печи

Н – полная высота; Но – полезная высо­та;

hг – высота горна; hз – высота заплечиков;

hp – высота распара; hш – высота шихты;

hк – высота колошника; dг – диаметр горна;

D – диаметр распара; Dk – диаметр колошника;

α – угол наклона шахты; β – угол наклона заплечиков.

Рисунок 1.1 – Профиль доменной печи

Между наиболее широкой цилиндрической частью профи­ля – распаром и горном находятся заплечики, представляющие собой усеченный конус, обращенный широким основанием к распару.

Выше распара находятся шахта, имеющая форму усеченно­го конуса, и цилиндрический колошник.

Основными размерами профиля являются: полезная и пол­ная высота печи, высота отдельных его частей (горна, заплечи­ков, распара, шахты, колошника) и диаметры горна, распара и колошника. Основные размеры указанных частей профиля определяют рабочее пространство печи, т. е. так называемый ее полезный объем Vo, равный объему лечи от оси чугунной летки до кромки большого конуса засыпного аппарата в крайнем опущенном положении. Расстояние между ней и осью чугунной летки называется полезной высотой Ho.

Уровень засыпи шихты принято поддерживать на 1,0-1,5 м ниже указанного положения большого конуса.

Полной высотой в отличие от полезной называется расстоя­ние от оси чугунной летки до верхней кромки основного опор­ного кольца колошника, на которое опирается чаша большого конуса засыпного аппарата. Разность полной и полезной высот определяется размером чаши и ходом большого конуса.

Отношения полезной высоты и диаметра колошника к диа­метру распара (соответственно Но: D и dk: D), а также диамет­ра распара к диаметру горна (D: dг) определяют конфигура­цию профиля, в том числе углы наклона шахты (α) и запле­чиков (β).

2 Конструкция доменной печи

Основанием доменной печи является фундамент (Рисунок 2.1). Фундамент состоит из собственно опоры, или плиты фундамен­та, расположенной ниже отметки заводского пола, и наружной части так называемого пня. Фундамент печи может быть одно­временно опорой прилегающих сооружений, связанных с конст­рукцией поддоменника и литейного двора.

Разновидностью современной конструкции является фунда­мент, выполненный в виде монолитной плиты из железобетона марки 300 в нижней части и из жароупорного бетона в верхней.

Фундамент печи представляет собой мощный железобетон­ный армированный массив, выдерживающий огромные нагрузки (вес доменной печи объемом 5000 м3 с шихтой достигает 440 кН).

Основание фундамента закладывается на твердом материко­вом грунте и должно по возможности доходить до скалы изверженного или осадочного происхождения. При слабом грунте фундамент опирают на свайное основание или делают опускной колодец. Причем отметка подошвы фундамента должна быть на расстоянии, равном глубине промерзания, а глубина забивки свай при этом зависит от качества грунта, который должен выдерживать нагрузку не менее 245 кПа. Это предохраняет фундамент от больших неравномерных осадок. Последние допускаются в пределах 100 мм с неравномерностью 0,001. Особенно опасны лессовидные грунты, дающие осадки тем значительнее, чем больше влаги попадает в почву в непосредственной близости от фундамента.

Что называется профилем доменной печи

Рисунок 2.1 – Фундамент доменной печи объемом 5000 м3

Осадки нарушают монолитность фундамента, сопряжение наклонного моста с верхом печи и центровку засыпного аппара­та, ось которого отклоняется от оси печи. Это отражается на распределении материалов, ровности хода и создает условия для искажения профиля печи.

Развитие трещин в фундаменте и его неравномерная осадка могут нарушить сплошность массива лещади и привести к осе­вому прорыву горна. Подобные аварии были в практике как за­рубежного, так и отечественного доменного производства. Во­зникновению их способствуют условия работы фундамента. По­сле задувки печи температура пня постепенно возрастает, со­здаются напряжения, происходят структурные изменения в бе­тоне с образованием трещин. Происходит постепенное разру­шение бетона, так как гидроалюминат и гидроксид кальция, вы­деляющиеся в процессе гидратации цемента, при высокой тем­пературе теряют гидратную воду. При этом разрушается кри­сталлическая решетка цементного камня, снижается его про­чность особенно при нагреве бетона до 547°С.

Выделяющаяся окись кальция гасится влагой воздуха с уве­личением объема, а разница величин деформаций цементного камня и заполнителя приводит к образованию микротрещин в местах их соприкосновения, что и обусловливает постепенное термическое разрушение фундамента. Ослабление этого разру­шения достигается сооружением верхней части фундамента из жароупорного бетона высотой 3,0 – 3,5 м, способного благодаря огнеупорному наполнителю – бою шамота – выдерживать температуру до 1100°С при допуске для несущей части фундамента 250°С. Применяемое в настоящее время охлаждение низа леща­ди воздухом или водой капитально решает вопрос защиты фун­дамента от термического разрушения. Температура поверхности его на границе с лещадью практически не превышает 100 – 150°С.

Известковый и доломитный щебень понижают термостой­кость бетона. Кристаллический кварц при 753°С подвергается пе­рерождению с большим увеличением объема. Поэтому предпоч­тительней всего готовить бетон, применяя гравий.

Массив фундамента должен иметь хорошую сплошность, т. е. не иметь пустот и рыхлых полостей. Все материалы, употребляемые для бетонирования, тщательно подготавливаются с точки зрения гранулометрического состава, отсутствия посторонних примесей и собственно мусора. Бетонирование ведут ускоренным темпом, без перерывов от начала и до конца в целях полу­чения максимальной однородности тела фундамента.

Существует несколько типов несущих конструкций доменных печей:

1 Американский (рисунок 2.2, а), преимущественно применяемый в Англии, с опорой колошника через кожух и моратор на так называемые основные колонны печи. Число колонн обычно равно или вдвое меньше числа фурм, другое сочетание неудобно, так как затрудняет обслуживание фурм и создает неравномер­ное размещение их по окружности горна.

Что называется профилем доменной печи

Рисунок 2.2 – Различные типы металлоконструкций доменных печей

Несмотря на меньший вес конструкций и более низкую стои­мость, по сравнению с другими типами, она имеет существенный недостаток – передает вибрации от скипового подъемника и обо­рудования колошника непосредственно на печь.

2 Немецкий (рисунок 2.2, б) с опорой колошника на четыре самостоятельные колонны. Несмотря на улучшенное обслужива­ние горна, в этой конструкции не исключено наличие значитель­ных напряжений, так как вес шахты передается полностью на заплечики и фурменную зону.

3 Комбинированный (рисунок 2.2, в), в котором уменьшены указанные втором пункте напряжения, но усложнено обслуживание горна.

4 Японский (рисунок 2.2, г) с шестью колоннами, имеющими кронштейны (применяется на современных печах в Японии). Колонны тяжелы в связи с эксцентриситетом нагрузок. Диаметр кольцевого воздухопровода, расположенного вне колонн, зна­чительно больше, чем в других вариантах. Это значительно уве­личивает и утяжеляет детали фурменного устройства. Возмож­ности организации напольного транспорта вокруг горна огра­ничены.

5 Американский (рисунок 2.2, д) с четырьмя колоннами, разра­ботанный в последнее время в США. В этом случае устраняют­ся последствия вибрации, вызываемые загрузочными устройст­вами, и имеется широкий доступ для обслуживания леток и фурм горна.

6 Самонесущий кожух шахты без моратора. Эта конструк­ция применена на доменных печах полезным объемом 3200 и 5000 м3. Опора колошникового устройства при этом выполнена в двух вариантах. На печи объемом 3200 м3 опора состоит из шести колонн, связанных вокруг печи опорной кольцевой бал­кой и передающих нагрузку на фундамент печи. Опорная балка сделана из стали 10Г2С1. На печи объемом 5000 м3 опорные ко­лонны отсутствуют и колошниковое устройство опирается на пе­рекрытие шатра поддоменника (рисунок 2.3). Данными конструк­тивными решениями исключается необходимость в мораторе, который является наиболее слабым конструктивным узлом шахты при обычной конструкции с опорой на колонны. Моратор вместе с примыкающими к нему царгами кожуха непрерывно испытывает переменные деформации, с одной стороны, от сжа­тия под действием горизонтальной составляющей реакции ко­лонн и, с другой стороны, от кольцевых усилий, возникающих от внутреннего давления, создаваемого газом в печи. Растягиваю­щие силы преобладают над сжимающими и являются причиной образования напряжений в кладке моратора с последующим разрушением кирпича.

Улучшение службы футеровки достигается устранением пе­ременных напряжений в кладке и кожухе. Конструктивно это осуществляется подвешиванием верхней части шахты к кольцевой балке на колошнике в восьми точках с одновременным креплением подвесок кольцевого воздухопровода к кожуху низа шахты. Постоянно действующие на него растягивающие усилия исключают переменные напряжения.

Таким образом, кожух печи, кроме внутренних сил давления, обусловленных комплексом происходящих в печи процессов, испытывает внешние силы, а именно: вес металлоконструкций, атмосферные явления. При нормальной температуре кожуха не выше 60 – 80°С эти силы не представляют опасности. Однако при сильном нагреве кожуха они могут вызвать существенные его деформации.

Что называется профилем доменной печи

Рисунок 2.3 – Фундамент современной доменной печи с опорой колошника на шатер поддоменника

2.3 Колонны и опорные кольца

В течение длительного периода существования чугунопла­вильного производства опорные колонны были обязательным элементом металлоконструкций доменных печей, передающим нагрузку всего верхнего строения печи на ее фундамент.

В отечественной и немецкой практике колонны, как правило, делались клепаными из листового или профильного металла. Впоследствии их стали делать сварными или цельнокатаными. Материалом для их изготовления служат низколегированные стали типа 15ХСНД.

Что называется профилем доменной печи

Рисунок 2.4 – Поперечное сечение опорных колонн (1 – 6)

Наиболее рациональной конструкцией из числа приведенных на рисунке 2.4 следует считать колонну 1, принятую в свое время для типовых печей Гипромеза. Колонна имеет наружные уголь­ники (с целью облегчения изготовления) и промежуточную стенку, предназначенную для усиления колонны на случай ча­стичной потери ее несущей способности. Кроме того, мощность колонны принимается с запасом прочности, рассчитанным на возможность выхода из строя одной колонны полностью и передачи дополнительных нагрузок на соседние. Для придания колоннам большей прочности внутрь полости их перпендикулярно к оси вклепывались, а теперь ввариваются диафрагмы. К тор­цам колонн крепятся опорные листы. Верхний лист крепится под углом к оси печи, поскольку опорное кольцо шахты гори­зонтально, а колонны для увеличения доступа к горну устанав­ливаются наклонно. Нижний срез колонны из-за нижнего опор­ного башмака делается перпендикулярным к ее оси. Для плот­ного прилегания торцов колонн к опорным листам и соответст­вующей передачи нагрузок срезы обрабатываются.

Опоры колонн. Колонны, несущие большие нагрузки, долж­ны надежно опираться на пень фундамента. Для этого их за­крепляют в фундаменте на отдельных опорах: чугунных литых башмаках или фундаментных кольцах–клепаных, чугунных литых, в настоящее время сварных. Иногда колонны связывают­ся с массивом пня специальными фундаментными болтами. Пло­щадь опор зависит от нагрузки на колонны и допускаемого на­пряжения бетона фундамента. Опоры размещают ниже кладки лещади на 2–3 м для защиты в случае выхода чугуна на гори­зонте лещади. Внутренняя полая часть колонн от низа до рабо­чей площадки заполняется бетоном.

Опорные кольца шахты. Передача давления на колонны со стороны кладки шахты, ее холодильников, частично заплечиков я колошникового устройства (в зависимости от типа несущих конструкций) осуществляется через верхнее опорное кольцо – моратор, представляющий собой мощную кольцевую балку. Коль­цо состоит из горизонтальных листов и вертикального листа пер­вого пояса (царги) кожуха шахты и соединяется с верхом колонн при помощи болтов через промежуточную опорную плиту. По­верхности соприкосновения листов и плиты тщательно обраба­тываются.

Моратор является основой для огнеупорной кладки шахты и допускает раздельное и одновременное выполнение футеровки низа и верха доменной печи.

Увеличение объемов доменных печей, режим повышенного давления газа на колошнике и другие факторы интенсификации процесса требуют тщательного подхода к выбору металла для изготовления кожуха. Прочность и способность его противо­стоять деформациям должны быть рассчитаны также и на на­грузку крепящихся к нему различных вспомогательных соору­жений. В современном исполнении он представляет собой свар­ную конструкцию, состоящую из конических и цилиндрических поясов (царг), изготовленных из низколегированных марок ли­стовой стали: 14Г2, 16Г2АФ, 10Г2С1, 15ХСНД и др., характери­зующихся высокой ударной вязкостью, большой прочностью, достаточной пластичностью и термостойкостью. Поэтому леги­рованные стали с большими прочностными характеристиками, такие как аустенитные, нержавеющие или ферритные, для со­оружения кожуха непригодны, поскольку они увеличивают склонность его к деформациям и образованию трещин (первые в силу высокого коэффициента термического расширения, вторые вследствие потери пластичности при повышенном нагреве в слу­чае частичного или полного износа кладки).

Кожух выполняют из листовой стали толщиной 30 – 50 мм, неодинаковой по высоте печи. Так, на доменной печи объемом 5000 м3 толщина листа (сталь 16Г2АФ) принята равной в ниж­ней части лещади 38 мм, в верхней части лещади, горне, фур­менной зоне, заплечиках и распаре 45, в шахте 38 – 30, колош­нике и куполе 45 мм. На доменной печи объемом 3200 м3 толщи­на листа (сталь 10Г2С1) составляет в лещади 40 – 50, в горне, за­плечиках и распаре 50, в шахте, колошнике и куполе 30 – 40 мм.

За рубежом кожух печи выполняют также цельносварным из котельной стали и стали других марок. Толщина у основания до 60, на колошнике 30 мм. Имеются печи с толщиной кожуха 70 (Бельгия) и 50 мм (Франция). В Японии предлагается со­оружать кожух шахты, распара и заплечиков в виде единой цельнометаллической конструкции при одинаковой толщине кладки с приваркой опорного кольца к кожуху печи для пере­дачи нагрузки на колонны.

Кожух печи в процессе эксплуатации испытывает различные напряжения. Кроме растягивающих кольцевых (горизонталь­ных) усилий от давления шихты и термического расширения кладки в радиальном направлении, имеют место и вертикальные (меридиональные) нагрузки.

Поэтому деформация может значительно превышать величи­ну нагрузок, соответствующих началу текучести металла. Она бывает переменной по высоте и окружности вследствие неравно­мерности давления кладки и холодильников на кожух. Трение между кладкой и кожухом препятствует перераспределению этих деформаций по окружности печи.

Так, в цилиндрическом кожухе лещади зафиксированы рас­тягивающие меридиональные напряжения 102 – 126 МПа, а под чугунной леткой они составляют 309 МПа. В этой же области установлено резкое повышение растягивающих кольцевых уси­лий до 431 МПа при 212 – 231 МПа на других участках. В ко­жухе стен горна эти напряжения равны пределу текучести ме­талла. В конической части кожуха фурменной зоны над чугун­ной леткой отмечены кольцевые растягивающие напряжения 124,5 МПа, а в остальных зонах горна 42 – 91 МПа.

Сжимающие меридиональные напряжения в том же кожухе фурменной зоны составляют 30,4 – 66,6 МПа и растягивающие под леткой – 41 МПа. В кожухе шахты меридиональные сжи­мающие усилия достигают 147 – 196 МПа при отсутствии растя­гивающих кольцевых напряжений. На величину напряжений влияет конструкция кожуха. Так, в зоне лещади при осевых уси­лиях, достигающих 400 МПа, в случае конической формы ко­жуха возникают напряжения до 525 МПа от изгибающих мо­ментов в местах конструктивных переломов, стыков вертикаль­ных плитовых холодильников, а также в местах с малой вели­чиной зазора между кладкой и холодильниками. Это указывает на преимущество цилиндрической конструкции горна перед ко­нической, имеющей большое количество разрывов кожуха, осо­бенно в районе чугунной летки.

Разнонаправленные меридиональные и кольцевые напряже­ния, а также неравномерный нагрев кожуха и рост кладки вы­зывают дополнительные местные растягивающие силы, влеку­щие за собой разрывы кожухов.

Напряжения особенно велики в течение первого месяца по­сле задувки печи в период разогрева огнеупорной кладки и кон­струкций. В дальнейшем они стабилизируются и постепенно снижаются. Величина напряжений зависит и от температуры атмосферного воздуха, с понижением которой они резко увели­чиваются.

В связи с напряженностью металла в кожухе печи отверстия в нем для воздушных амбразур, шлаковых леток усиливают накладками, а для чугунной летки специальной стальной рамой. Вырезы для холодильников шахты должны быть минимальны­ми по числу и площади и не иметь острых углов во избежание излишних напряжений. В нижней части (под лещадью) кожух печи иногда имеет так называемое «донышко», назначение ко­торого сводится к предупреждению газопроницаемости в леща­ди и увеличению ее прочности.

Верхняя часть кожуха – купол шахты – стягивается «ос­новным» кольцом, литым стальным фланцем, являющимся так­же опорой для чаши большого конуса засыпного аппарата. Сим­метричные вырезы в куполе имеют круглое или овальное сече­ние и служат для примыкания газоотводов. Вырезы усилены мощными стальными амбразурами для придания жесткости.

2.5 Колошниковое устройство

Колошниковое устройство доменной печи представляет собой комплекс металлоконструкций различного назначения.

Газоотводы для равномерного отвода газа устанавливают в кратном количестве не менее четырех (на доменной печи 5000м3 сделано восемь газоотводов). Газоотводы соединяются попарно, выводятся вверх на отметки, превышающие расположение остальных элементов печи. Образующиеся вертикальные газо­отводы называются «свечами». В зависимости от принятой схе­мы колошникового устройства число свечей колеблется от двух до четырех. Свечи перекрываются так называемыми «атмосфер­ными клапанами», отрегулированными на определенное задан­ное давление газа в печи, при превышении которого они само­произвольно открываются.

Атмосферный клапан (рисунок 2.5) состоит из собственно кла­пана 1, седла 2 и корпуса 3. Сопрягающиеся поверхности клапана и седла упрочняются твердыми сплавами и пришлифовываются. Верх корпуса выполнен вместе со стойками, несущими на себе ось 4, опирающуюся на подшипники качения. Двуплечий рычаг 5, опускающий и поднимающий клапан, закреплен на оси и соединен шарнирно с собственно клапаном. К длинному пле­чу рычага присоединяется канат, идущий к лебедке атмосфер­ного клапана, при помощи которой производится маневрирова­ние им при текущих остановках и ремонтах.

Что называется профилем доменной печи

Рисунок 2.5 – Атмосферный клапан печи

К другому плечу подвешен контргруз, рассчитанный на оп­ределенную величину давления в печи, при превышении которо­го клапан должен открываться и выпускать газ в атмосферу. Маневрирование клапанами при текущих остановках и ремон­тах производится при помощи специального привода. Высота свечей рассчитана на частичное оседание и возвращение в печь выносимой с газом колошниковой пыли. С этой целью им прида­ется достаточно широкое сечение до 0,4 – 0,5 площади сечения колошника в месте примыкания к куполу печи и до 0,25 – 0,30 в вышележащих сечениях.

На верхней так называемой балансирной площадке колошни­кового копра для смены атмосферных клапанов и других дета­лей, а также для подъема различных грузов при ремонтах уста­новлены консольно-поворотные краны грузоподъемностью до 6,5 т, вылетом стрелы 6750 мм и поворотом стрелы на 180°.

Колошниковый копер – мощная конструкция, опираемая на колошниковую площадку – служит основанием для крепления всех деталей колошникового устройства, в том числе и верха скипового моста, кроме свечей и газоотводов. На колошниковом копре крепятся площадки для балансиров конусов засыпного аппарата, шкивов скипового подъема и обслуживания атмос­ферных клапанов, различных люков и заглушек на вертикаль­ных газоотводах. К нему же присоединяется приемная направ­ляющая воронка засыпного аппарата и консольная балка с гру­зоподъемной тележкой для обслуживания ремонтных работ на колошнике. В большинстве случаев балка имеет дополнительное крепление кронштейнами, крепящимися на шарнирных опорах к куполу печи. В связи с большим увеличением веса колошнико­вого оборудования и соответственно грузоподъемности тележки (с 30 до 150 т) балка перестала быть консольной и имеет в сов­ременных проектах вторую опору – металлическую решетча­тую колонну, связанную с пылеуловителем.

Для обеспечения условий безопасности все площадки колош­никового устройства соединяются лестницами и имеют запасные выходы к площадкам лифта, наклонного моста, куполам возду­хонагревателей и пылеуловителей.

Изнутри газоотводы и свечи футерованы огнеупорным кир­пичом толщиной 115 мм во избежание излишнего нагрева метал­ла, быстрого износа от абразивного действия газа с пылью, а также для уменьшения конденсации пара при остановках печей.

Вертикальные газоотводы в верхней своей части соединяются симметрично в два наклонных газоотвода, нисходящих к одному или двум пылеуловителям. Сечение газоотводов в 3 – 4 раза больше сечения свечей. Уклон нисходящих газоотводов к горизонту не менее 30 – 370 в зависимости от физических свойств проплавляемого сырья, а также во избежание осаждения в них колошниковой пыли и их залипания.

Конфигурация газоотводов зависит от их числа, расстояния между печью и пылеуловителями, способа подвода к ним газа (снизу или сверху) и от крепления колошникового устройства – копер или соединительные балки между свечами. Для сохранения кожуха газоотводов их футеруют таким же кирпичом, как и свечи. Толщина стенки кожуха принимается обычно 10 – 12 мм.

По длине газоотводов в верхней их половине делаются люки для вентиляции и осмотра во время ремонтов. На поверхности газоотводов располагаются лестницы для наблюдения за их состоянием и для перехода с пылеуловителя на колошник

3 Определение размеров профиля

Длительное время принципы расчета профиля печей считалось секретом фирмы и материалы, касающиеся этого вопроса, не публиковались.

Немецкий металлург А. Ледебур в 1873 г. впервые рекомендовал рациональные, по его мнению, соотношение элементов профиля и установил методику определения их абсолютных размеров.

Оценку работы доменной печи он характеризовал коэффициентом использования объема, выражая его количеством тонн чугуна, выплавляемого за сутки в одном кубическом метре объема печи Q, необходимый для выплавки заданного количества чугуна в сутки, а затем и высоту печи

где 2,85 – коэффициент, соответствующий определенным соотношениям высоты печи и других частей ее профиля при условии, что все размеры (высоты и диаметры отдельных элементов) прямо пропорциональны высоте печи.

В частности, высота: горна hг=0,10Н; заплечиков hз=0,21Н; распара hр=0,04Н; шахты hш=0,65Н; диаметр горна: dг=0,17Н; распара D=Н:3,5=0,2857Н; колошника dк=0,2Н или dк=0,2·3,5=0,7 D.

3.1 Метод определения профиля

Установив несоответствие соотношения А. Ледебура для определения отдельных элементов профиля, академик предложил метод расчета, основанный на отрицании прямой пропорциональности между различными частями профиля и общей высотой печи. Зависимость ее от полезного объема печи V0, м3 выразил формулой

где n – коэффициент, являющейся переменной величиной, тем больший 2,85, чем выше отношение Н:D.

Коэффициент использования полезного объема печи (м3·сут/т), пропорционален ее объему, приходящемуся на 1т выплавленного чугуна.

где V – объем шихты без уминки, приходящийся на 1т чугуна, м3;

r – коэффициент уминки, равный 12,5% при работе на коксе и 25% на древесном угле, или соответственно 0,875 и 0,750;

t – время пребывания шихты в печи, определяется по времени аналогичных плавок, ч.

После определения полезного объема печи можно найти другие размеры профиля, используя его взаимосвязь с полной высотой печи и диаметром распара, установленную по методике Павлова на основании результатов изучения многих доменных печей различного объема. Эта зависимость выражается формулой

где К – коэффициент, связывающий полезный объем печи с полной высотой Н и диаметром распара D, и учитывающие отклонение профиля печи от цилиндра.

Значение коэффициента К может возрастать с увеличением угла заплечиков, высоты цилиндрического распара и отношение Н:D. Вычисленный в свое время Павловым для печей всевозможных объемов и отношения Н:D коэффициент К составлял в среднем 0,54, а в современных условиях 0,56-0,63.

При определении полной высоты печи и диаметра распара исходил из отношения Н:D, рекомендуя его для древесноугольных печей равным 5,0÷4,25, а для коксовых 4,25÷3,50 (последнее значение для печей, работающих на слабом коксе или имеющих предельную высоту). Задаваясь соответствующим отношением Н:D, можно определить значения

где n и m – коэффициенты, величина которых при К=0,54 и различных отношениях Н:D, по методике Павлова, составляют величины приведенные в таблице 1.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *