Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Раздел 2: Проецирование (6 часов)

Понятие о проецировании. Способы проецирования. Центральное и параллельное проецирование. Прямоугольное (ортогональное) проецирование. Проецирование на 2 и 3 взаимно перпендикулярные плоскости. Метод Монжа. Плоскости проекций. Расположение видов. Аксонометрические проекции. Прямоугольная изометрическая проекция. Способы построения прямоугольной изометрической проекции плоских и объемных фигур. Рациональные построения в изометрии. Технический рисунок. Эскиз. Решение творческих задач.

Урок № 5: Понятие о проецировании. Способы проецирования.

Что называется проецированием приведите примеры проекций

Ботвинников А.Д. § 3, 4 [1]

Степакова В. В. § 12, 13 [3]
Вышнепольский И.С. § 16 [8]

Что называется проецированием приведите примеры проекцийpdf Презентация «Способы проецирования»

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийpdf

« Проекция» — слово латинское. В переводе на русский язык оно означает « бросать (отбрасывать) вперед».

Что называется проецированием приведите примеры проекций

Рис. 1. Понятия проецирования.

Способы изображения предметов отличаются друг от друга, как методами проецирования, так и условиями их построения. Одни способы дают более наглядное изображение, нетрудны для построения, другие менее наглядны, но зато более просты для построения.

Чтобы выяснить, что представляет собой метод проекций, обратимся к примерам.

Поместим перед электрической лампочкой какой-нибудь предмет. Тень, полученную на стене, можно принять за проекцию предмета. Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета.

Посмотрим процесс получения проекций геометрических фигур, из которых состоят дорожные знаки (рис. 2, 5, 8). Для построения изображений этих геометрических фигур использован метод проекций.

На рисунке 2,б проекцией точки А будет точка а, т.е. точка пересечения проецирующего луча Оа с плоскостью проекций. Проекцией точки В будет точка b и т. д. Если теперь соединить на плоскости эти точки прямыми линиями, то мы получим проекцию изображаемой фигуры, например треугольника.

Что называется проецированием приведите примеры проекций

На изображениях точки в натуре, т е точки на предмете, будем обозначать большими ( прописными) буквами латинского алфавита. Проекции этих точек на плоскость обозначают теми же, но малыми ( строчными) буквами.

Рассмотренный пример построения изображений составляют сущность метода проекций.

Что называется проецированием приведите примеры проекций

Рис. 3. Центральное проецирование на плоскости.

Величина проекции зависит от положения предмета по отношению к картинной плоскости, а также от расстояния его до этой плоскости и до центра проецирования. На рис. 3, а предмет расположен между центром О и картинной плоскостью К и поэтому его изображение получается увеличенным. Если предмет расположить за плоскостью К (рис. 3, б), то изображение получится уменьшенным.

Центральные проекции часто называют перспективой. Взаимно параллельные линии предмета, не параллельные картинной плоскости, проецируются как группа линий, сходящихся в одной точке (рис. 4).

Что называется проецированием приведите примеры проекций

Изображение, полученное методом центрального проецирования, сходно с фотографией, так как оно получается примерно таким, каким его видит глаз человека. Также примерами центральной проекции являются кинокадры, тени, отброшенные от предмета лучами электрической лампочки, и др. Метод центрального проецирования используется в архитектуре, строительстве, а также в академическом рисовании – рисовании с натуры.

Что называется проецированием приведите примеры проекций

Рис. 5. Параллельное проецирование

При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом.

Если это любой угол, отличный от прямого, то проецирование называется косоугольным (рис. 6). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются. Однако строить предмет в параллельной косоугольной проекции проще, чем в центральной.

Что называется проецированием приведите примеры проекций

Рис. 6. Параллельное косоугольное проецирование на плоскости.

В техническом черчении такие проекции используют для построения наглядных изображений (рис.7).

Что называется проецированием приведите примеры проекций

Рис. 7. Процесс поучения наглядного изображения.

Что называется проецированием приведите примеры проекций

Рис. 8. Параллельное прямоугольное проецирование.

Проекционное черчение имеет большое значение для развития пространственного представления, без которого невозможно сознательно читать чертежи и тем более выполнять их (рис 9).

Что называется проецированием приведите примеры проекций

Рис. 9. Параллельное прямоугольное проецирование на плоскости

Способ прямоугольного проецирования является основным в черчении. Он используется для построения изображений на чертежах и наглядных изображений предметов, так как они достаточно наглядны и выполнять их проще, чем центральные.

Чертежи в системе прямоугольных проекций дают достаточно полные сведения о форме и размерах предмета, так как предмет изображается с нескольких сторон.

Что называется проецированием приведите примеры проекций

Практические задания, тесты и домашние работы

Что называется проецированием приведите примеры проекций

Вопросы для повторения

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийpdf Вопросы

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийts2

Источник

Метод проекций. Способы проецирования в черчении

Что называется проецированием приведите примеры проекцийЧто такое проекция. Все чертежи выполняют по правилам проецирования. Проецированием называется процесс построения изображения предмета на плоскости — бумаге, экране, классной доске и т. д. Получившееся при этом изображение называют проекцией. Примерами проекций являются чертежи предметов, наглядные изображения, фотографические снимки, кинокадры и др.

«Проекция» — слово латинское. В переводе на русский язык оно означает «бросать (отбрасывать) вперед».

Поместим перед электрической лампочкой какой-нибудь предмет. Тень, полученную на стене, можно принять за проекцию предмета.

Положите на бумагу какой- нибудь плоский предмет и обведите его карандашом. Вы также получите изображение, соответствующее проекции этого предмета.

Способы проецирования
Другие примеры проекций вы можете привести и сами, если внимательно всмотритесь в окружающие вас явления.

В черчении в качестве проекции используют такое графическое изображение, которое получено путем проецирования предмета по особому способу, называемому методом проекций. Поэтому, чтобы понять, как строятся в черчении проекции предмета, надо сначала познакомиться с этим методом. Метод проекций. В основе правил построения чертежей лежит метод проекций. Чтобы выяснить, что представляет собой этот метод, обратимся к примерам.

Справа показан процесс получения проекций геометрических фигур, из которых состоят дорожные знаки. Для построения изображений этих геометрических фигур использован метод проекций.

Чтобы построить изображение предмета по методу проекций, необходимо через точки на предмете (например, через его вершины) провести воображаемые лучи до встречи их с плоскостью. Лучи, которые проецируют предмет на плоскость, называются проецирующими. Такими лучами будут Оа, Ob, Ос, Аа, ВЬ и т. д. Плоскость, на которой получается изображение предмета, называется плоскостью проекций.

Изображение, т. е. проекция, получается на плоскости в том месте, где проецирующие лучи пересекаются с ней. Проекцией точки А будет точка а, т. е. точка пересечения проецирующего луча Оа с плоскостью проекций. Проекцией точки В будет точка b и т. д. Если теперь соединить на плоскости эти точки прямыми линиями, то мы получим проекцию изображаемой фигуры, например треугольника.

На изображениях точки пространства, т. е. точки на предмете, будем обозначать большими прописными буквами латинского алфавита. Проекции этих точек на плоскость обозначают теми же, но малыми (строчными) буквами.

Заказать с доставкой на дом Принтер HP в Кыргызстане без дополнительных затрат.

Источник

Документ по черчению на тему «Понятие о проецировании»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

« Проекция » — слово латинское. В переводе на русский язык оно означает « бросать (отбрасывать) вперед ».

Что называется проецированием приведите примеры проекций

Рис. 1. Понятия проецирования.

Способы изображения предметов отличаются друг от друга, как методами проецирования, так и условиями их построения. Одни способы дают более наглядное изображение, нетрудны для построения, другие менее наглядны, но зато более просты для построения.

Чтобы выяснить, что представляет собой метод проекций, обратимся к примерам.

Поместим перед электрической лампочкой какой-нибудь предмет. Тень, полученную на стене, можно принять за проекцию предмета. Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета.

Посмотрим процесс получения проекций геометрических фигур, из которых состоят дорожные знаки (рис. 2, 5, 8). Для построения изображений этих геометрических фигур использован метод проекций.

Что называется проецированием приведите примеры проекций

Рис. 2. Центральное проецирование

Что называется проецированием приведите примеры проекций

Рис. 3. Центральное проецирование на плоскости.

Величина проекции зависит от положения предмета по отношению к картинной плоскости, а также от расстояния его до этой плоскости и до центра проецирования. На рис. 3, а предмет расположен между центром О и картинной плоскостью К и поэтому его изображение получается увеличенным. Если предмет расположить за плоскостью К (рис. 3, б), то изображение получится уменьшенным.

Что называется проецированием приведите примеры проекций

Изображение, полученное методом центрального проецирования, сходно с фотографией, так как оно получается примерно таким, каким его видит глаз человека. Также примерами центральной проекции являются кинокадры, тени, отброшенные от предмета лучами электрической лампочки, и др. Метод центрального проецирования используется в архитектуре, строительстве, а также в академическом рисовании – рисовании с натуры.

Что называется проецированием приведите примеры проекций

Рис. 5. Параллельное проецирование

При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом.

Если это любой угол, отличный от прямого, то проецирование называется косоугольным (рис. 6). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются. Однако строить предмет в параллельной косоугольной проекции проще, чем в центральной.

Что называется проецированием приведите примеры проекций

Рис. 6. Параллельное косоугольное проецирование на плоскости.

В техническом черчении такие проекции используют для построения наглядных изображений (рис.7).

Что называется проецированием приведите примеры проекций

Рис. 7. Процесс поучения наглядного изображения.

Что называется проецированием приведите примеры проекций

Рис. 8. Параллельное прямоугольное проецирование.

Проекционное черчение имеет большое значение для развития пространственного представления, без которого невозможно сознательно читать чертежи и тем более выполнять их (рис 9).

Что называется проецированием приведите примеры проекций

Рис. 9. Параллельное прямоугольное проецирование на плоскости

Способ прямоугольного проецирования является основным в черчении. Он используется для построения изображений на чертежах и наглядных изображений предметов, так как они достаточно наглядны и выполнять их проще, чем центральные.

Чертежи в системе прямоугольных проекций дают достаточно полные сведения о форме и размерах предмета, так как предмет изображается с нескольких сторон.

Источник

Основы проецирования

Проецированием называется процесс получения изображения предмета на плоскости.

Получившееся при этом изображение называют проекцией. Проекция – в переводе с латинского – «бросать (отбрасывать) вперёд».

В черчении изображения получают по так называемому методу проекций.

Чтобы построить изображение предмета по методу проекций, нужно через точки на предмете провести воображаемые лучи до встречи их с плоскостью. Эти лучи называются проецирующими. Плоскость, на которой получается изображение предмета, называется плоскостью проекций.

Если проецирующие лучи расходятся из одной точки, проецирование называется центральным (рис. 60а). Точка, из которой выходят лучи, называется центром проецирования.

Полученное при этом изображение называется центральной проекцией. Пример: тени, отброшенные от предмета лучами электрической лампочки.

Если проецирующие лучи параллельны друг другу, то проецирование называется параллельным (рис. 60б), а полученное изображение – параллельной проекцией. Пример: солнечные тени.

При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом. Если это любой острый угол, то проецирование называется косоугольным (рис. 61а). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются.

Когда проецирующие лучи перпендикулярны к плоскости проекций, проецирование называют прямоугольным (рис. 61б), а полученное изображение – прямоугольной проекцией.

Способ прямоугольного проецирования является основным в черчении.

Проецирование на одну, две и три взаимно перпендикулярные плоскости проекций

Расположим предмет перед плоскостью проекций так, чтобы на получившемся изображении были видны три его стороны (рис. 62).

По такому изображению легко представить пространственный образ предмета.

Такое проецирование в черчении используют для построения наглядных изображений, однако, на наглядных изображениях предметы получают большие искажения и по ним трудно определить истинные размеры предмета.

Теперь расположим предмет перед плоскостью проекций так, чтобы на изображении была видна только одна его сторона, и построим его прямоугольную проекцию (рис. 63а).

На данном изображении проекции рёбер предмета, которые параллельны двум его измерениям (например: длина и ширина), равны натуральным размерам. Но на таком изображении нет третьего измерения предмета (высоты), поэтому оно не наглядно. Такие изображения используют в случаях, когда высота (толщина) детали одинакова во всех её точках (например, чертежи прокладок). Тогда на чертеже такой детали делают запись, указывающую её толщину (высоту). Пример приведен на рис. 63б (S4).

Иногда на одной плоскости изображают предметы, не имеющие одинаковой высоты во всех его точках. Тогда рядом с изображением точки числом указывают её высоту. Такие изображения называют проекциями с числовыми отметками (рис. 63в).

Чтобы судить о трёх измерениях предмета, его необходимо спроецировать ещё на одну плоскость проекций (П2), которая параллельна другой паре измерений предмета. Тогда вторая плоскость будет расположена перпендикулярно первой плоскости проекций (рис. 64).

Теперь по двум прямоугольным проекциям можно судить о размерах и форме предмета. Хотя форма не всегда ясно выражается двумя проекциями. Поэтому при изображении предметов сложной формы необходимо строить три (а иногда и более) прямоугольных проекции.

Возьмём три взаимно перпендикулярные плоскости проекций (рис. 65).

Одна из них занимает горизонтальное положение, её называют горизонтальной плоскостью проекций и обозначают П1. Две другие плоскости — вертикальные. Одну называют фронтальной плоскостью проекций (от французского слова «фронталь» – «лицом к зрителю»), другую – профильной плоскостью проекций (от французского слова «профиль» – «вид сбоку») и обозначают соответственно П2 и П3.

Линии пересечения плоскостей проекций называют осями проекций и обозначают буквами x, y, z. Точку пересечения осей проекций обозначают буквой О.

В трёхгранный угол, образованный плоскостями проекций, поместим параллелепипед и, проведя проецирующие лучи перпендикулярно плоскостям проекций, получим его проекции. Изображение на плоскости П1 – горизонтальная проекция, на плоскости П2 и П3 – соответственно фронтальная и профильная проекции.

Совмещённые плоскости с построенными на них изображениями предмета показаны на рис. 65б. Линии, соединяющие между собой проекции, называют линиями связи. Линии связи всегда перпендикулярны осям проекций.

На чертежах плоскости проекций не ограничивают и не обозначают. Кроме того, на чертеже при изображении предмета можно не наносить и оси проекций, так как при параллельном проецировании расстояние от плоскости проекций до изображаемого предмета не влияет на очертание его проекций (рис. 66а).

Это даёт возможность устанавливать произвольное расстояние между проекциями, сохраняя между ними проекционную связь даже при отсутствии линий связи (рис. 66б). Такой чертёж называется безосным. При построении проекций здесь пользуются осями симметрии предмета, центровыми линиями или характерными его плоскостями (рис. 67).

Метод прямоугольного проецирования на две и три взаимно перпендикулярные плоскости был разработан французским учёным-геометром Гаспаром Монжем в конце XVIII века. Поэтому его называют ещё методом Монжа.

Г. Монж положил начало развитию новой науки об изображении предметов – начертательной геометрии.

Способы построения третьей проекции

Проекционную связь между горизонтальной и профильной проекциями можно установить несколькими графическими приёмами:

На рис. 68а,б,в эти приёмы показаны на примере построения третьей проекции точки.

Удобнее всего пользоваться третьим способом, т.к. при наименьшем количестве графических операций достигается большая точность построения.

Если три вида уже построены, то место постоянной прямой чертежа произвольно выбирать нельзя. Нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии предмета. Через полученную точку К под углом 45° проводят отрезок прямой. Если осей симметрии на чертеже нет, то продолжают до пересечения в точке К1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 69).

Источник

Способы проецирования

Содержание:

Система обозначений

С целью отделения групп геометрических объектов введены такие символические обозначения:

Символы латинского и греческого алфавитов приведены в приложении А

Что называется проецированием приведите примеры проекций

Проецирование точки, прямой, плоскости

Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию. В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением).

Способы проецирования

Известны два метода проецирования: центральное и параллельное.

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Центральное проецирование

Для изображения геометрических объектов на плоскости применяют процедуру проецирования, которая состоит в проведении через точку А луча l и дальнейшем определении точки A1 его пересечения с плоскостью проецирования П1 (рис. 1.1 а). Полученная точка А1 называется проекцией точки А на плоскость П1.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийЦентральное проецирование

В центральном проецировании лучи, пронизывающие точки тела, «выходят» из одной точки S – центра проецирования (рис. 1.1 б). Разновидностями центрального проецирования являются угловая (рис. 1.2 а) и фронтальная (рис. 1.2 б) перспективы.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийРазновидности перспективы

Центральное проецирование характеризуется положением центра проецирования

Центральная проекция предмета схожа с изображением, которое воспринимает глаз человека, а также с изображением, полученным посредством фотографии. Этот способ проецирования является наиболее наглядным (способствует зрительному восприятию предметов), но наиболее сложным в своей реализации. Он применяется преимущественно в живописи, строительстве и архитектуре.

Параллельное проецирование

Косоугольное проецирование

Параллельное проецирование можно рассматривать как отдельный случай центрального проецирования, для которого центр S бесконечно удалён от плоскости П1. В этом случае лучи, пронизывающие каждую точку тела, взаимно параллельны (рис. 1.3).

В отличие от центрального, параллельное проецирование характеризуется ориентацией лучей относительно плоскости проекций.

В случае, когда лучи не перпендикулярны к плоскости П1, проецирование называется косоугольным (рис. 1.3).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийКосоугольное проецирование

Косоугольное проецирование используется преимущественно для решения специальных задач на определение точек и линий пересечения геометрических фигур. При этом, как правило, плоскость проекции занимает особое положение относительно системы трёх взаимно перпендикулярных плоскостей (см. п. 2.5).

Ортогональное проецирование

Ортогональное проецирование является отдельным случаем параллельного проецирования, в котором лучи перпендикулярны плоскости проекций (рис. 1.4).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийОртогональное проецирование

Метод ортогонального проецирования положенный в основу построения конструкторской документации, а именно сборочных и рабочих чертежей и эскизов в машиностроении.

Основные свойства ортогонального проецирования будут рассмотрены по мере преподавания материала.

Эпюр Монжа

Эпюр Монжа (от франц. epure – чертёж) – чертёж, в котором пространственная фигура изображена с использованием проецирования на систему двух или трёх взаимно перпендикулярных площадей П1, П2, П3 с дальнейшим условным совмещением последних в одну плоскость (рис. 1.5 а). П1, П2, П3горизонтальная, фронтальная и профильная плоскости проекций.

Чертёж, построенный методом проекций, называется проецирующим, или комплексным чертежом. На рис. 1.5 б построен комплексный чертёж точки А, который складывается из трёх проекций последней: А1 – горизонтальная проекция; А2 – фронтальная проекция; А3 – профильная проекция точки А.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПостроение комплексного чертежа точки

Линии, которые проходят через пары проекций А1А2, А1А3, А2А3, называются линиями проекционной связи. Они перпендикулярны или параллельны координатным осям х, y, z.

На комплексном чертеже ось у дублируется. Это приводит к тому, что одну из проекций точки можно обозначить по двум другим, как это показано стрелками на рис. 1.5 б.

Проецирование точки

Принадлежность точек четвертям и октантам

Пространство условно можно разделить с помощью плоскостей проекций П1, П2 на четыре части – четверти (рис. 1.6 а), а с помощью плоскостей П1, П2, П3 (рис. 1.6 б) – на восемь частей – октантов (от греческого οκτώ – восемь).

Каждая из проекций точки А (рис. 1.5 б) определяется парой координат: А1(x,y), А2(x,z), А3(y,z). Знак «+» или «–» при числовом значении x, y, z позволяет сделать вывод про принадлежность точки А той или другой четверти, октанту (табл. 1.1 – 1.2). Примеры комплексных чертежей точек, которые принадлежат разным четвертям и октантам, приведены на рис. 1.7.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийЧетверти (а) и октанты (б).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПринадлежность точек четвертям и октантам

Принадлежность точек плоскостям проекций и осям координат

Координаты точки иногда называют так: х – ширина; у – глубина; z – высота. В случае, когда высота z точки равна нулю, точка принадлежит плоскости П1 (рис. 1.8, точка А). Если глубина у точки равна нулю, точка принадлежит плоскости П2 (рис. 1.8, точка В). В случае нулевой ширины х, точка принадлежит плоскости П3 (рис. 1.8, точка С).

Если две координаты точки равны нулю, точка принадлежит оси, которая отвечает за третью (не нулевую) координату. Например, точка, которая имеет координаты (Что называется проецированием приведите примеры проекций), принадлежит оси у, поскольку у ≠ 0, х = z = 0.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПринадлежность точек плоскостям проекций.

Проецирование прямой

Прямая общего положения

Прямую l в пространстве можно задать двумя точками А и В, которые ей принадлежат (рис. 1.9 а). Проекцией прямой на любую плоскость проекций является прямая (рис. 1.9) или точка (см. п. 1.4.2, рис. 1.11).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПрямая общего положения

Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения.

Прямые особого (частного) положения

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми особого(частного) положения. Их детальное рассмотрение обусловлено тем, что эти линии используются для решения большинства задач начертательной геометрии.

Прямые особого положения подразделяются на два вида:

а) прямая уровня – прямая, параллельная только одной из плоскостей проекций:

1) горизонталь h – прямая, параллельная П1 (рис. 1.10 а);

2) фронталь f – прямая, параллельная П2 (рис. 1.10 б);

3) профильная прямая уровня p – прямая, параллельная П3 (рис. 1.10 в);

б) проецирующая прямая – прямая, перпендикулярная плоскости проекций:

1) горизонтально- проецирующая прямая u – прямая, перпендикулярная П1 (рис. 1.11 а);

2) фронтально-проецирующая пряма v – прямая, перпендикулярная П2 (рис. 1.11 б);

3) профильно-проецирующая пряма w – прямая, перпендикулярная П3 (рис. 1.11 в)

Длина отрезка прямой уровня h, f, p, соответственно на плоскостях проекций П1, П2, П3 является действительной длиной размещённого в пространстве отрезка. Таким образом, прямая уровня проецируется на одну из плоскостей проекций в натуральную величину (аббревиатура НВ).

Углы наклона прямой уровня к плоскостям проекций можно определять как углы наклона его проекций к осям координат (рис. 1.10, табл. 1.3). Например, угол β наклона горизонтали h к П2 обозначается как угол между проекцией h1 и осью х.

Отрезки проецирующих прямых проецируются на одну из плоскостей проекций в точку, а на две другие – в натуральную величину (рис. 1.11).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПрямые уровня

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПроецирующие прямые

Следы прямой

Точки пересечения прямой с плоскостями проекций называются следами. Прямая общего положения имеет три следа – горизонтальный Н, фронтальный F, профильный Р (рис. 1.12).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСледы прямых общего положения

Способы определения следов прямой общего положения:

а) для определения горизонтального следа Н прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью х (эта точка является фронтальной проекцией Н2 горизонтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением горизонтальной проекции l1. Полученная точка является горизонтальным следом Н прямой l и совпадает с его горизонтальной проекцией Н1 (рис. 1.13 а – б);

б) для определения фронтального следа F прямой l необходимо продолжить горизонтальную проекцию l1 до пересечения с осью х (эта точка является горизонтальной проекцией F1 фронтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением фронтальной проекции l2. Полученная точка является фронтальным следом F прямой l и совпадает с его фронтальной проекцией F2 (рис. 1.13 а);

в) для определения профильного следа Р прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью z (эта точка является фронтальной проекцией Р2 профильного следа) и провести горизонтальную линию проекционной связи до пересечения с продолжением профильной проекции l3. Полученная точка является профильным следом Р прямой l и совпадает с его профильной проекцией Р3 (рис. 1.13 б).

Прямая уровня имеет только два следа, которые не принадлежат той плоскости, которой прямая параллельна (рис. 1.14)

. Проецирующая прямая имеет только один след, который совпадает с той проекцией прямой, которая является точкой (рис. 1.15).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийОпределение следов прямой

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСледы прямых уровня

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСледы проецирующих прямых

Способ прямоугольного треугольника

Длины проекций А1В1, А2В2, А3В3 отрезка АВ прямой общего положения всегда меньше, чем натуральная величина этого отрезка. Поэтому возникает проблема определения натуральной величины отрезка по известным его проекциям. Эта задача решается с помощью способа прямоугольного треугольника (рис. 1.16), который позволяет определять. в том числе, углы α, β, γ наклона отрезка к плоскостям проекций П1, П2, П3 соответственно.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ прямоугольного треугольника

Суть способа прямоугольного треугольника:

а) для определения на плоскости П1 натуральной величины отрезка АВ необходимо определить разность ∆z высот точек А, В и отложить отрезок Что называется проецированием приведите примеры проекцийдлиной ∆z перпендикулярно к горизонтальной проекции А1В1. Длина гипотенузы Что называется проецированием приведите примеры проекцийпрямоугольного треугольника Что называется проецированием приведите примеры проекцийявляется натуральной величиной отрезка АВ. Угол между горизонтальной проекцией А1В1 отрезка и его натуральной величиной Что называется проецированием приведите примеры проекцийравен углу α наклона отрезка АВ к плоскости П1;

б) для определения на плоскости П2 натуральной величины отрезка АВ необходимо определить разность ∆у глубин точек А, В и отложить отрезок Что называется проецированием приведите примеры проекцийдлиной ∆у перпендикулярно фронтальной проекции А2В2. Длина гипотенузы Что называется проецированием приведите примеры проекцийпрямоугольного треугольника Что называется проецированием приведите примеры проекцийявляется натуральной величиной отрезка АВ. Угол между фронтальной проекцией А2В2 отрезка и его натуральной величиной Что называется проецированием приведите примеры проекцийравен углу β наклона отрезка АВ к плоскости П2;

в) для определения на плоскости П3 натуральной величины отрезка АВ необходимо определить разность ∆х ширины точек А, В и отложить отрезок Что называется проецированием приведите примеры проекцийдлиной ∆х перпендикулярно профильной проекции А3В3. Длина гипотенузы Что называется проецированием приведите примеры проекцийпрямоугольного треугольника Что называется проецированием приведите примеры проекцийявляется натуральной величиной отрезка АВ. Угол между профильной проекцией А3В3 отрезка и его натуральной величиной Что называется проецированием приведите примеры проекцийравен углу γ наклона отрезка АВ к плоскости П3.

Принадлежность точки прямой

В начертательной геометрии принадлежность точки А прямой l определяется с помощью проекций этих объектов.

Условие принадлежности точки прямой Точка А принадлежит прямой l, если три её ортогональные проекции A1, A2, A3 принадлежат соответствующим проекциям l1, l2, l3 прямой (рис. 1.17 а).

На рис. 1.17 б показаны три проекции точки А, которая принадлежит прямой l. На рис. 1.18 а точка В не принадлежит прямой Что называется проецированием приведите примеры проекций, поскольку две её проекции В1, В3 не принадлежат соответствующим проекциям Что называется проецированием приведите примеры проекцийпрямой. На рис. 1.18 б точка С не принадлежит прямой р профильного уровня, поскольку одна из её проекций С3 не принадлежит проекции Что называется проецированием приведите примеры проекцийпрямой.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПринадлежность точки прямой

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийНепринадлежность точки прямой

Взаимное расположение двух прямых

Две прямые в пространстве могут пересекаться (рис. 1.19 а), быть параллельными (рис. 1.19 б) или скрещивающимися .

Условие пересечения двух прямых

Две прямые l, m пересекаются в точке А, если три ортогональные проекции А1, А2, А3 являются точками пересечения соответствующих проекций прямых (рис. 1.20 а).

Условие параллельности двух прямых

Две прямые l, m параллельны, если три их ортогональные проекции попарно параллельны (рис. 1.20 б).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПересекающиеся и параллельные прямые

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийУсловия пересечения и параллельности двух прямых

В случае, когда прямые не параллельны и не пересекаются, они являются скрещивающимися. их взаимное размещение рассмотрено в п. 1.4.7.3.

Особый случай прямых, которые пересекаются под прямым углом, рассмотрен в п. 1.4.8.

Определение видимости точек и линий

Определение видимости — это определение точек предмета, лежащих на одном луче проецирования (называемых конкурирующими), и обозначение на чертеже только тех из них, которые расположены по этому лучу ближе к наблюдателю.

Видимость внешнего контура

При решении задач начертательной геометрии необходимо учитывать видимость геометрических объектов (точек и линий). Среди совокупности всех объектов необходимо выделять такие два вида (рис. 1.21):

а)внешний контур – совокупность линий, которые находятся за границами всех других объектов на данной плоскости проекций;

б) сходящиеся линии– совокупность линий, пересекающихся в одной точке(.рёбра многогранника)

Правило определения видимости внешнего контура

Внешний контур на данной плоскости проекций всегда является видимым (рис. 1.21).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийВидимость точек и линий

Видимость сходящихся линий

Сходящиеся линии на разных плоскостях проекций могут иметь разную видимость.

Правило определения видимости сходящихся линий

Видимость сходящихся линий совпадает с видимостью точки их пересечения (рис. 1.22):

а) видимы на П1,если точка пересечения имеет наибольшую высоту;

б) видимы на П2, если точка пересечения имеет наибольшую глубину;

в) видимы на П3, если точка пересечения имеет наибольшую ширину.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийВидимость сходящихся линий (рёбер многогранника)

На рис. 1.22 четыре сходящиеся линии на горизонтальной проекции являются видимыми, поскольку высота z точки K их пересечения наибольшая. Три сходящиеся линии на фронтальной и профильной проекциях невидимы, поскольку точки М, N их пересечения являются невидимыми.

Метод конкурирующих точек

Метод конкурирующих точек позволяет определить взаимное расположение точек двух скрещивающихся прямых (рис. 1.23).

Суть метода конкурирующих точек

а) для определения того, какая из двух скрещивающихся прямых l, m глубже, на них выбираются точки 1, 2, размещённые на общей фронтально-проецирующей прямой v. На горизонтальной плоскости проекций находятся глубины у выбранных точек и делается вывод о том, какая линия впереди, какая сзади;

б) для определения того, какая из двух скрещивающихся прямых l, m выше, на них выбираются точки 3, 4, размещённые на общей горизонтально-проецирующей прямой Что называется проецированием приведите примеры проекций. На фронтальной плоскости проекций находятся высоты z выбранных точек и делается вывод о том, какая линия выше, какая ниже;

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийМетод конкурирующих точек

На рис. 1.23 точка 2 находится глубже, поэтому её фронтальная проекция Что называется проецированием приведите примеры проекцийявляется невидимой. В дальнейшем невидимые точки будут обозначаться в круглых скобках, например, Что называется проецированием приведите примеры проекций. Проекция Что называется проецированием приведите примеры проекцийтакже является невидимой, поскольку точка 4 размещена ниже точки 3. Точка 6 находится слева от точки 5, поэтому проекция Что называется проецированием приведите примеры проекцийявляется невидимой.

Метод конкурирующих точек применяется, например, для определения видимости рёбер многогранников (рис. 1.24):

а) на горизонтальной проекции из пары скрещивающихся прямых АВ, СD первая является невидимой, поскольку из фронтальной проекции видно, что А2В2 находится ниже, чем C2D2;

б) на фронтальной проекции из пары скрещивающихся прямых АС, BD первая является невидимой, поскольку из горизонтальной проекции видно, что А1С1 находится сзади от В1D1;

в) на профильной проекции из пары скрещивающихся прямых АD, ВС вторая является невидимой, поскольку из фронтальной проекции видно, что В2С2 находится справа от А2D2.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийВидимость скрещивающихся прямых

Перпендикулярность прямых

Ортогональные проекции двух прямых общего положения, которые пересекаются под прямым углом, в общем случае не являются перпендикулярными. Другими словами, прямой угол при его проецировании на плоскости проекций П1, П2, П3 искажается (рис. 1.25).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПроецирование прямого угла

Существуют отдельные случаи, когда прямой угол проецируется в натуральную величину. Эти случаи описываются теоремой о проецировании прямого угла.

Теорема о проецировании прямого угла

Прямой угол проецируется в натуральную величину на ту плоскость проекций, которой параллельна одна из его сторон (рис. 1.26 а).

Как следствие теоремы, прямой угол между прямой общего положения l и горизонталью h проецируется в натуральную величину на плоскость проекций П1; между l и фронталью f – на плоскость П2 (рис. 1.26 б).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийТеорема проецирования прямого угла

Способ построения прямой общего положения, перпендикулярной заданной, описан в пп. 1.6.1.1 – 1.6.1.2.

Проецирование плоскости

Способы задания плоскостей

Плоскость Σ в пространстве можно задать шестью способами (рис. 1.27):

а) тремя точками А, В, С, которые не принадлежат одной прямой;

б) прямой l и точкой D, которая её не принадлежит;

в) двумя параллельными прямыми а и b;

г) двумя пересекающимися прямыми c, d;

д) плоской фигурой Ф (треугольник, окружность и т.д.);

е) следами Что называется проецированием приведите примеры проекций– линиями пересечения плоскости с плоскостями проекций (см. п. 1.5.2).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособы задания плоскостей

Разнообразие способов задания плоскостей обусловливает существование в начертательной геометрии большого количества способов решения задач.

Следы плоскости

Следами Что называется проецированием приведите примеры проекцийплоскости называются линии её пересечения с плоскостями проекций П1, П2, П3. Каждый след может быть построен по двум точкам – соответствующим следам двух прямых этой плоскости (рис. 1.28).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСледы плоскости общего положения

Правило определения следов плоскости:

а) для определения горизонтального следа Что называется проецированием приведите примеры проекцийплоскости Σ необходимо выбрать на ней две прямые l, m и определить горизонтальные следы Что называется проецированием приведите примеры проекцийэтих прямых (см. п. 1.4.3). Горизонтальный след Что называется проецированием приведите примеры проекцийплоскости Σ проводится через точки Что называется проецированием приведите примеры проекцийдо пересечения с осями х, у. Полученные точки Что называется проецированием приведите примеры проекцийявляются точками пересечения плоскости Σ с осями координат х, у;

б) для определения фронтального следа Что называется проецированием приведите примеры проекцийплоскости Σ достаточно определить фронтальный след F одной из прямых (например, l). Фронтальный след Что называется проецированием приведите примеры проекцийплоскости Σ проводится через точки Что называется проецированием приведите примеры проекцийF до пересечения осью z. Полученная точка Что называется проецированием приведите примеры проекцийявляется точкой пересечения плоскости Σ с осью z;

в) профильный след Что называется проецированием приведите примеры проекцийплоскости Σ проходит через точки Что называется проецированием приведите примеры проекцийСовокупность параметров Что называется проецированием приведите примеры проекцийназывается определителем плоскости.

Свойства следов плоскости:

а) каждая пара следов плоскости общего положения пересекается на оси координат: Что называется проецированием приведите примеры проекций– на оси х; Что называется проецированием приведите примеры проекций– на оси z; Что называется проецированием приведите примеры проекций– на оси у. Это свойство даёт возможность определять один из следов плоскости по двум другим;

б) следы плоскости являются отдельным случаем линий уровня, которые принадлежат плоскостям проекций: горизонтальный след является горизонталью с нулевой высотой; фронтальный след является фронталью с нулевой глубиной; профильный след является прямой профильного уровня с нулевой шириной;

в) проекция следа плоскости на одну из плоскостей проекций является натуральной величиной (НВ), а на две другие – совпадает с осями координат (табл. 1.4); Обозначенные свойства позволяют использовать следы плоскости для быстрого решения задач начертательной геометрии.

Что называется проецированием приведите примеры проекций

Главные линии плоскости

Главными линиями плоскости (рис. 1.29) являются:

б) линии наибольшего наклона – прямые линии, которые образуют наибольший угол с плоскостями проекций.

Свойства линий наибольшего наклона:

а) линия Что называется проецированием приведите примеры проекцийнаибольшего наклона к П1 перпендикулярна любой горизонтали h плоскости; б) линия Что называется проецированием приведите примеры проекцийнаибольшего наклона к П2 перпендикулярна любой фронтали f плоскости;

в) линия Что называется проецированием приведите примеры проекцийнаибольшего наклона к П3 перпендикулярна любой прямой профильного уровня р плоскости.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийГлавные линии плоскости

Углы наклона плоскости к плоскостям проекции

Углы α, β, γ наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяются как углы наклона линий наибольшего наклона Что называется проецированием приведите примеры проекцийк соответствующим плоскостям проекций (рис. 1.29). Например, угол β между Что называется проецированием приведите примеры проекцийи П2 является углом наклона плоскости Σ к П2.

Натуральная величина углов наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяется способами преобразования комплексного чертежа (см. раздел 2), кроме случаев, обозначенных в п. 1.5.5.

Плоскости особого(частного) положения

В начертательной геометрии различают такие виды плоскостей:

а) плоскость общего положения – плоскость, не параллельная и не перпендикулярная ни одной из плоскостей проекций (рис. 1.27 – 1.29);

б) плоскость уровня – плоскость, параллельная плоскости проекций:

1) горизонтальная плоскость уровня – плоскость, параллельная П1 (рис. 1.30 а);

2) фронтальная плоскость уровня –плоскость, параллельная П2 (рис. 1.30 б);

3) профильная плоскость уровня–плоскость, параллельная П3 (рис. 1.30 в);

в) проецирующая плоскость – плоскость, перпендикулярная только одной плоскости проекций:

1) горизонтальнопроецирующая плоскость – плоскость, перпендикулярная П1 (рис. 1.31 а);

2) фронтальнопроецирующая плоскость – плоскость, перпендикулярная П2 (рис. 1.31 б);

3) профильно-проецирующая плоскость – плоскость, перпендикулярная П3 (рис. 1.31 в).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПлоскости уровня

Свойства плоскостей особого(частного) положения:

а) горизонтальная плоскость уровня не имеет горизонтального следа, а её фронтальный и профильный следы перпендикулярны оси z;

б) фронтальная плоскость уровня не имеет фронтального следа, а её горизонтальный и профильный следы перпендикулярны оси y;

в) профильная плоскость уровня не имеет профильного следа, а её горизонтальный и фронтальный следы перпендикулярны оси х;

г) фронтальный и профильный следы горизонтально-проецирующей плоскости параллельны оси z;

д) горизонтальный и профильный следы фронтально-проецирующей плоскости параллельны оси у;

е) горизонтальный и фронтальный следи профильно-проецирующей плоскости параллельны оси х;

ж) углы α, β, γ наклона проецирующих плоскостей к плоскостям проекций П1, П2, П3 являются углами наклона следов к осям координат (рис. 1.31).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПроецирующие плоскости

Плоскости особого положения широко используются при решении задач на пересечение геометрических объектов (см. п. 1.5.8, рис. 1.42 – 1.44; раздел 4; п. 6.4, рис. 6.18, 6.21 – 6.23).

Принадлежность точки плоскости

Точка А принадлежит плоскости Σ, если она принадлежит любой линии l (например, прямой) этой плоскости (рис. 1.32).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПринадлежность точки плоскости

Для определения неизвестных проекций точки А, принадлежащей плоскости Σ, по одной известной проекции (например, А2) применяются такие способы:

а) способ прямой общего положения: через известную проекцию А2 точки проводится фронтальная проекция l2 прямой общего положения; вводятся вспомогательные точки Что называется проецированием приведите примеры проекцийпрямой и определяются их горизонтальные и профильные проекции, с помощью которых строятся проекции l1, l3 прямой l. По условию принадлежности точки А прямой l (см. п. 1.4.5, рис. 1.17) определяются проекции А1, А3 (рис. 1.33);

б) способ прямой особого(частного) положения:

1) способ горизонтали: через известную проекцию А2 точки проводится фронтальная проекция h2 горизонтали (параллельно оси х); вводится вспомогательная точка 1 и определяется её горизонтальная проекция, через которую проводится h1 (параллельно горизонтальному следу Что называется проецированием приведите примеры проекцийплоскости). С помощью вертикальной линии проекционной связи определяется проекция А1. Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 а);

2) способ фронтали: через известную проекцию А2 точки проводится фронтальная проекция f2 фронтали (параллельно Что называется проецированием приведите примеры проекций). Вводиться вспомогательная точка 2 и определяется её горизонтальная проекция, через которую проводится f1 (параллельно оси х). С помощью вертикальной линии проекционной связи определяется проекция А1; Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 б);

3) способ профильной прямой уровня: через известную проекцию А2 точки проводится фронтальная проекция р2 профильной прямой уровня (параллельно оси z). Вводится вспомогательная точка 3 и определяется её профильная проекция, через которую проводится р3 (параллельно Что называется проецированием приведите примеры проекций). С помощью горизонтальной линии проекционной связи определяется проекция А3. Проекция А1 является точкой пересечения линий проекционной связи, проведенных из проекций А2, А3 (рис. 1.34 в).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ прямой общего положения

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ прямых особого положения

Взаимное расположение прямой и плоскости

Прямая l в пространстве может принадлежать плоскости Σ, быть параллельною ей или пересекать её (рис. 1.35 а – в).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийВзаимное расположение прямой и плоскости

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПринадлежность прямой плоскости

Условие принадлежности прямой плоскости

Прямая l принадлежит плоскости Σ, если две ей точки А, В принадлежат этой плоскости (рис. 1.35 а).

Определение неизвестных проекций прямой l, которая принадлежит плоскости Σ, состоит в определении неизвестных проекций двух точек А, В этой прямой способами, описанными в п. 1.5.6. Например (рис. 1.36), если известна фронтальная проекция отрезка АВ, который принадлежит плоскости Σ, заданной параллельными прямыми а, b, проводится фронтальная проекция прямой l общего положения через А2, В2. С помощью двух вспомогательных точек 1, 2, принадлежащих прямым а, b плоскости, и вертикальных линий проекционной связи определяются горизонтальные проекции А1В1 точек прямой l.

На рис. 1.36 оси координат не обозначены, поскольку для решения многих позиционных задач начертательной геометрии необходимости в их построении нет.

Условие параллельности прямой и плоскости

Прямая l параллельна плоскости Σ, если она параллельна любой прямой m этой плоскости (рис. 1.35 б).

Способ построения прямой, параллельной плоскости

Для построения проекций прямой l, проходящей через точку D параллельно плоскости Σ, необходимо построить проекции любой прямой m, принадлежащей плоскости. Проекции прямой l будут проходить через проекции точки D параллельно соответствующим проекциям прямой m, (рис. 1.37). Поскольку существует бесконечное число способов проведения прямой m в плоскости Σ, задача о параллельности прямой и плоскости имеет бесконечное множество решений.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПараллельность прямой и плоскости

Суть способа вспомогательной секущей плоскости при определении точки пересечения прямой и плоскости

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ вспомогательной секущей плоскости

В начертательной геометрии вспомогательные секущие плоскости особого положения обозначаются одним из следов (например, плоскость Ω на рис. 1.38 показана горизонтальным следом Ω1).

Взаимное расположение двух плоскостей

Две плоскости в пространстве могут совпадать, быть параллельными или пересекаться по линии (рис. 1.39).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийВзаимное расположение двух плоскостей

Условие совпадения двух плоскостей

Условие параллельности двух плоскостей

Плоскость параллельна плоскости Σ, если пара непараллельных прямых плоскости параллельна паре непараллельных прямых плоскости Σ (рис. 1.39 б).

Способ построения параллельных плоскостей

Для построения проекций плоскости Ω, проходящей через точку D параллельно плоскости Σ (заданной, например, параллельными прямыми a, b), необходимо построить проекции двух непараллельных прямых с, d, принадлежащих плоскости Σ. Искомая плоскость буде задана двумя прямыми l, m, проекции которых проходят через соответствующие проекции точки D параллельно проекциям вспомогательных прямых с, d (рис. 1.41).

Если плоскости Ω, Σ не совпадают и не параллельны, то они пересекаются по прямой линии (рис. 1.39 в).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСовпадение плоскостей

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПараллельность плоскостей

Линия пересечения двух плоскостей определяется такими способами:

а) способ вспомогательных секущих плоскостей (рис. 1.42);

б) способ плоскостей-посредников особого(частного) положения (рис. 1.43 – 1.44);

в) способ следов (рис. 1.45);

г) способы преобразования комплексного чертежа (см. п. 2.1.8, 2.3.5);

д) способ косоугольного проецирования (см. п. 2.5).

Суть способа вспомогательных секущих плоскостей при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Каждая из этих точек является точкой пересечения плоскости Σ с любыми двумя линиями а, b плоскости Ω. Каждая из точек M, N определяется методом вспомогательной секущей плоскости (см. п. 1.5.7, рис. 1.38).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ вспомогательных секущих плоскостей

Суть способа плоскостей-посредников при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Для определения точки М вводится плоскость Ψ особого положения, которая пересекает заданные плоскости по прямым линиям a, b. Точкой пересечения этих прямых является точка М. Для определения точки N вводится плоскость Θ особого положения, пересекающая заданные плоскости по прямым линиям с, d. Точкой пересечения этих прямых является точка N. Искомая линия k пересечения плоскостей Ω, Σ проходит через найденные точки М, N (рис. 1.43).

Например, на рис. 1.44 две плоскости заданы треугольниками АВС, DEF. Для определения точки М пересечения плоскостей вводится фронтально-проецирующая плоскость Ψ, заданная фронтальным следом Ψ2, и находятся линии a, b её пересечения с треугольниками АВС, DEF. Точка М является точкой пересечения прямых a, b. Для определения точки N пересечения плоскостей вводится горизонтальная плоскость уровня Θ, заданная фронтальным следом Θ2, и находятся линии с, d её пересечения с треугольниками АВС, DEF. Точка N является точкой пересечения прямых c, d.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекций

Суть способа следов при определении линии пересечения двух площадей

Линия k пересечения плоскостей Σ, Ω строится по двум точкам M, N. Строятся следы плоскостей. Точки M, N являются точками пересечения двух пар одноимённых следов плоскостей (рис. 1.45).

Например, на рис. 1.46 плоскость Σ задана параллельными прямыми a, b, плоскость – треугольником АВС. Горизонтальный след Что называется проецированием приведите примеры проекцийплоскости Σ строится по двум следам Что называется проецированием приведите примеры проекцийпрямых a, b. Фронтальный след Что называется проецированием приведите примеры проекцийпроходит через точку Что называется проецированием приведите примеры проекцийи фронтальный след F прямой а. Горизонтальный след Что называется проецированием приведите примеры проекцийплоскости строится по двум следам Что называется проецированием приведите примеры проекцийпрямых АВ, ВС. Фронтальный след Что называется проецированием приведите примеры проекцийпроходит через точку Что называется проецированием приведите примеры проекцийи фронтальный след Что называется проецированием приведите примеры проекцийпрямой АВ. Точка М, которая совпадает со своей горизонтальной проекцией М1, является точкой пересечения горизонтальных следов Что называется проецированием приведите примеры проекцийТочка N, которая совпадает со своей фронтальной проекцией N2, является точкой пересечения фронтальных следов Что называется проецированием приведите примеры проекций. Проекции М2, N1 находятся на оси х. Горизонтальная проекция k1 искомой линии k пересечения двух площадей проходит через точки М1, N1, фронтальная k2 – через точки М2, N2.

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийСпособ следов

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийОпределение линии пересечения плоскостей способом следов

Способ следов можно рассматривать как частный случай способа плоскостей-посредников, в котором плоскости-посредники являются двумя плоскостями проекций (на рис. 1.46 – П1, П2).

Перпендикулярность прямой и плоскости и двух плоскостей

Условие перпендикулярности прямой и плоскости

Прямая п перпендикулярна плоскости Σ, если она перпендикулярна двум не параллельным прямым этой плоскости (рис. 1.47).

Как эти прямые удобно выбирать линии уровня плоскости, например, горизонталь h и фронталь f. Только в этом случае прямые углы между п, h и f проецируются в натуральную величину на П1, П2 (см. п. 1.4.8, рис. 1.26).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПерпендикулярность прямой и плоскости

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПостроение прямой, перпендикулярной плоскости

На рис. 1.48 построены проекции прямой п, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. В плоскости Σ через произвольно выбранную её точку А проведены горизонталь h и фронталь f. из горизонтальной проекции D1 точки D проведена горизонтальная проекция Что называется проецированием приведите примеры проекцийперпендикулярная проекции h1. из фронтальной проекции D2 проведена фронтальная проекция Что называется проецированием приведите примеры проекций, перпендикулярная проекции f2.

Условие перпендикулярности двух плоскостей

Две плоскости Ω, Σ перпендикулярны, если любая прямая Что называется проецированием приведите примеры проекций, которая принадлежит первой плоскости, перпендикулярна второй плоскости (рис. 1.49).

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПерпендикулярность плоскостей

Что называется проецированием приведите примеры проекций

Что называется проецированием приведите примеры проекцийПостроение взаимно перпендикулярных плоскостей

На рис. 1.50 построены проекции плоскости Ω, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. Плоскость задана двумя прямыми Что называется проецированием приведите примеры проекцийпересекающимися в точке D. При этом прямая Что называется проецированием приведите примеры проекцийперпендикулярна плоскости Σ (рис. 1.48). Прямая Что называется проецированием приведите примеры проекцийимеет произвольную ориентацию в пространстве, поэтому задача построения двух взаимно перпендикулярных плоскостей имеет бесконечное число решений.

Линия пересечения взаимно перпендикулярных плоскостей по необходимости определяется одним из способов, описанных в п. 1.5.8.

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔ Что называется проецированием приведите примеры проекцийЧто называется проецированием приведите примеры проекций

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Что называется проецированием приведите примеры проекций Предыдущий урок Что называется проецированием приведите примеры проекцийПоурочное планирование Что называется проецированием приведите примеры проекцийСледующий урок Что называется проецированием приведите примеры проекций