Что называется приращением аргумента и каким символом обозначается
Приращение аргумента и функции.
Пусть функция f(x) определена на некотором интервале I, х0 и х два произвольных значения аргумента из этого интервала. Разность между двумя значениями аргумента называется приращением аргумента и обозначаютΔх:
Разность между двумя значениями функции называется приращением функции и обозначаютΔу: Δу=Δ f=f(xo+ Δx)-f(xo)
2. Определение производной.
Пусть функция y = f(x) определена в промежутке X.
Предел отношения приращения функции Δf к приращению аргумента Δх, когда Δх стремится к нулю, при условии, что этот предел существует, называется производной функции f(x) в точке х.
Производной функции y = f(x) в точке хo называется предел
= .
Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.
Производная обозначается символами y / (x0), f / (x0) ; , .
Читается f'(x) (эф штрих от икс).
Нахождение производной называется дифференцированием функции, поэтому выражение «продифференцировать функцию» равносильно выражению «найти производную функции».
3. Физический смысл производной.
Исходя из определения производной, можно сказать:
1) мгновенная скорость прямолинейного движения есть производная от пути S по времени t: v (t)= S'(t);
2) мгновенная скорость химической реакции есть производная от функции X по аргументу t: v (t) = x'(t).
Таким образом, можно сделать вывод: производная функции у = f(x) по аргументу х есть мгновенная скорость изменения функции у = f(x). В этом состоит физический смысл производной.
Вторая производная функции у = f(x) по аргументу х есть ускорение изменения функции у = f(x).
4. Геометрический, смысл производной.
Рассмотрим график функции f(x) и построим на этом графике произвольным образом точку М. В данной точке М проведем касательную к графику функции f(x)
Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом состоит геометрический смысл производной.
Таблица производных
Дата добавления: 2016-06-05 ; просмотров: 20944 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Что называется приращением аргумента и каким символом обозначается
рХУФШ ЙНЕЕН ОЕЛПФПТХА ЖХОЛГЙА y= f(x), ПРТЕДЕМЕООХА ОБ ОЕЛПФПТПН РТПНЕЦХФЛЕ. дМС ЛБЦДПЗП ЪОБЮЕОЙС БТЗХНЕОФБ x ЙЪ ЬФПЗП РТПНЕЦХФЛБ ЖХОЛГЙС y = f(x) ЙНЕЕФ ПРТЕДЕМЕООПЕ ЪОБЮЕОЙЕ.
уПУФБЧЙН ПФОПЫЕОЙЕ РТЙТБЭЕОЙС ЖХОЛГЙЙ Л РТЙТБЭЕОЙА БТЗХНЕОФБ
оБКДЕН РТЕДЕМ ЬФПЗП ПФОПЫЕОЙС РТЙ . еУМЙ ЬФПФ РТЕДЕМ УХЭЕУФЧХЕФ, ФП ЕЗП ОБЪЩЧБАФ РТПЙЪЧПДОПК ДБООПК ЖХОЛГЙЙ f(x) Ч ФПЮЛЕ x 0 Й ПВПЪОБЮБАФ f ‘( x 0 ). йФБЛ,
рТПЙЪЧПДОБС ПВПЪОБЮБЕФУС УЙНЧПМБНЙ f ‘ (x), y ‘, . лПОЛТЕФОПЕ ЪОБЮЕОЙЕ РТПЙЪЧПДОПК РТЙ x = a ПВПЪОБЮБЕФУС f ‘( a ) ЙМЙ .
пРЕТБГЙС ОБИПЦДЕОЙС РТПЙЪЧПДОПК ПФ ЖХОЛГЙЙ f(x) ОБЪЩЧБЕФУС ДЙЖЖЕТЕОГЙТПЧБОЙЕН ЬФПК ЖХОЛГЙЙ.
дМС ОЕРПУТЕДУФЧЕООПЗП ОБИПЦДЕОЙС РТПЙЪЧПДОПК РП ПРТЕДЕМЕОЙА НПЦОП РТЙНЕОЙФШ УМЕДХАЭЕЕ РТБЛФЙЮЕУЛПЕ РТБЧЙМП :
рТЙНЕТ 1
оБКФЙ РТПЙЪЧПДОХА ЖХОЛГЙЙ y = x 2
Б) Ч РТПЙЪЧПМШОПК ФПЮЛЕ;
a)
рТЙНЕТ 2
йУРПМШЪХС ПРТЕДЕМЕОЙЕ, ОБКФЙ РТПЙЪЧПДОХА ЖХОЛГЙЙ Ч РТПЙЪЧПМШОПК ФПЮЛЕ.
Что называется приращением аргумента и каким символом обозначается
Приращение аргумента и функции
На оси Х – две точки: x0 и x1 (рис.1). Если от x1 отнимем x0, то узнаем длину шага между ними – а говоря иначе, узнаем, на сколько приросла точка x0 в точке x1. Эта разность между двумя заданными точками оси X и называется приращением аргумента.
Точки x0 и x1 образуют на оси Y соответственно точки у0 и у1. Если от у1 отнять у0, то мы получим приращение функции.
Итак, в функции y = f(x) относительно определенных точек x0 и x1:
разность x1 – x0 называется приращением аргумента, а разность у1 – у0 называется приращением функции.
Приращение обозначается греческой буквой Δ (дельта):
Можно сказать и иначе: если к x0 прибавить величину приращения Δx, то мы получим точку x1.
То есть x1 = x0 + Δx (рис.2).
Тогда точку f(x1), отмеченную на первом рисунке как у1, тоже можно обозначить иначе:
f(x0 + Δx).
Осталось вывести формулу приращения функции.
Формула приращения функции:
Δy = f(x0 + Δx) – f(x0)
Δf = f(x0 + Δx) – f(x0)
Что называется приращением аргумента и каким символом обозначается
Определение : Пусть функция у = f(x) определена в точках х0 и х1. Разность х1 — х0 называют приращением аргумента (при переходе от точки x0 к x1), а разность f(х1) — f(x0) называют приращением функции.
Приращение аргумента обозначают ΔX ( дельта икс, Δ — прописная буква греческого алфавита «дельта»; соответствующая строчная буква пишется так: δ). Приращение функции обозначают ΔY или Δ f.
Итак, x1 — x0 = Δ х, значит, х1 = х0+ Δ x. f(x 1) — f(xо) = Δ у (или Δ f), значит,
Приращение функции в точке — функция обычно обозначаемая от новой переменной определяемая как
Переменная называется приращением аргумента.
В случае когда ясно о каком значении идёт речь, применяется более короткая запись.
Таким образом все эти непонятные иксы, игреки и дельты становятся вполне конкретными точками на плоскости. И мы понимаем,что фраза из определения приращения «Разность х1 — х0 называют приращением аргумента (при переходе от точки x0 к x1), а разность f(х1) — f(x0) называют приращением функции» имеет вполне определенный смысл.
Надеюсь, что этот обзор помог вам разобраться с такими непонятными определениями, как приращение функции и приращение аргумента. Для тех же, кто по прежнему ничего не понял, я советую разобраться с такими базовыми понятиями, как функция и аргумент функции.
Решение производной для чайников: определение, как найти, примеры решений
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правило первое: выносим константу
Пример. Вычислим производную:
Правило второе: производная суммы функций
Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.
Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.
Найти производную функции:
Правило третье: производная произведения функций
Производная произведения двух дифференцируемых функций вычисляется по формуле:
Пример: найти производную функции:
Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.
В вышеуказанном примере мы встречаем выражение:
В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.
Правило четвертое: производная частного двух функций
Формула для определения производной от частного двух функций:
Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.
С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.