Что называется планом скоростей
План скоростей
План скоросте́й — диаграмма, на которой векторы скоростей точек абсолютно твёрдого тела или некоторого механизма отложены из одной точки в выбранном масштабе.
План скоростей обладает следующими свойствами:
План скоростей позволяет графически решать задачи на нахождение скоростей точек тела. Чем крупнее выбранный масштаб, в котором построены векторы скоростей точек тела, тем точнее будет решена задача.
Пример решения задачи
Пусть имеется механизм АБВГ, состоящий из стержней, соединённых шарнирами. Пусть скорость точки В известна, и равна 2 м/с. Требуется найти скорость точки Б.
Заметим, что для нахождения скорости точки Б в рассмотренном примере необязательно знать длины звеньев механизма, важно знать только соотношения длин.
Эту же задачу можно решить с использованием понятия мгновенного центра скоростей.
См. также
Литература
Полезное
Смотреть что такое «План скоростей» в других словарях:
план скоростей механизма — Совокупность планов скоростей звеньев механизма с одним общим полюсом … Политехнический терминологический толковый словарь
план скоростей звена — Графическое построение, представляющее собою плоский пучок, лучи которого изображают абсолютные скорости точек звена плоского механизма, а отрезки, соединяющие концы лучей, относительные скорости соответствующих точек при данном положении звена … Политехнический терминологический толковый словарь
ПЛАН — (1) маркшейдерский графическое изображение в определённом масштабе и с достаточной подробностью геометрических элементов всех подземных выработок по отдельным пластам или горизонтам, а также геологических условий залегания пород, состояний… … Большая политехническая энциклопедия
ПОЛЮС — (1) особая, высшая, крайняя точка чего либо; (2) П. географический (Северный и Южный) воображаемая точка пересечения оси вращения Земли с земной поверхностью. Географические П. это единственные точки земной поверхности, не участвующие в суточном… … Большая политехническая энциклопедия
самолёт — летательный аппарат тяжелее воздуха с крылом, на котором при движении образуется аэродинамическая подъёмная сила, и силовой установкой, создающей тягу для полёта в атмосфере. Основные части самолёта: крыло (одно или два), фюзеляж, оперение, шасси … Энциклопедия техники
СССР. Технические науки — Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… … Большая советская энциклопедия
Авиация — (франц. aviation, от латинского avis птица) летание на аппаратах тяжелее воздуха в околоземном воздушном пространстве. В 60 е гг. 20 в. в А. применяют Самолёты, Вертолёты, Планёры. Различают А. гражданскую, осуществляющую перевозки людей… … Большая советская энциклопедия
самолёт — … Энциклопедия «Авиация»
Определение скоростей и ускорений
Планом скоростей (ускорений) механизма называется пучок векторов, выходящих из одной точки (полюса плана), каждый из которых в некотором масштабе изображает вектор абсолютной скорости (абсолютного ускорения) какой-либо точки механизма, а отрезки, соединяющие их концы, изображают векторы относительных скоростей (относительных ускорений).
Построение плана скоростей сводится к реализации известного положения теоретической механики, согласно которому при плоско-параллельном движении твёрдого тела (звена) скорость любой его точки равна векторной сумме скорости в поступательном переносном движении вместе с другой точкой, принятой в качестве полюса, и скорости её в относительном вращательном движении относительно этого полюса.
Рассмотрим построение планов скоростей и ускорений на примере кривошипно-ползунного механизма (рис. 4.3). Схема механизма должна быть изображена в масштабе в исследуемом положении. Прежде необходимо определить параметры движения точки А. Её скорость по величине равна произведению угловой скорости кривошипа 1 на его радиус , т. е. и направлена перпендикулярно кривошипу в сторону движения точки А. Ускорение точки А по величине равно произведению квадрата угловой скорости кривошипа также на его радиус, т. е. и направлено от точки А к точке О, так как совпадает с нормальной составляющей полного ускорения точки А из-за равенства нулю тангенциальной составляющей ускорения (угловое ускорение кривошипа принимается равным нулю). Точка А принадлежит не только кривошипу, но и шатуну 2 и принимается в качестве полюса относительного вращения точки В. Скорость точки В определяется векторным равенством , т. е. скорость точки В равна скорости точки А плюс скорость точки В относительно точки А. В этом равенстве первое слагаемое правой части известно по величине и по направлению, второе слагаемое направлено перпендикулярно шатуну 2 в данном положении, т. е. известно по направлению, и, наконец, вектор левой части направлен параллельно направляющим ползуна. При этих условиях треугольник скоростей легко строится в предварительно выбранном масштабе .
Построение плана ускорений производится в той же последовательности, что и план скоростей. При этом используется векторное равенство , в котором первый вектор правой части известен полностью, второй неизвестен ни по величине, ни по направлению. Вектор левой части известен по направлению – он направлен параллельно направляющим ползуна. В этих условиях треугольник ускорений не строится. Разложим вектор относительного ускорения на две составляющих, согласно равенству . Первое слагаемое представляет собой относительное нормальное ускорение, направленное от точки В к точке А и равное по величине частному от деления квадрата относительной скорости на длину шатуна, т. е. . Второе слагаемое, относительное тангенциальное ускорение направлено перпендикулярно шатуну 2 и неизвестно по величине. Теперь план ускорений строится без затруднений с применением заранее выбранного масштаба . Планы скоростей и ускорений данного механизма представлены на рис. 4.3.
Используя планы, легко найти физические величины скоростей и ускорений, для этого необходимо измерить отрезки в миллиметрах, выражающие скорости и ускорения, и умножить их на соответствующий масштаб.
Абсолютная скорость точки В: , .
Относительная скорость точки В: , .
Угловая скорость шатуна 2: , .
Тангенциальное ускорения точки В относительно точки А:
, .
Полное относительное ускорение: , .
Угловое ускорение шатуна 2: , .
4.4. Метод кинематических диаграмм
(метод графического дифференцирования)
Основой метода служит известное положение математики, согласно которому производная функции, заданной в виде графика, в какой-либо её точке численно равна тангенсу угла наклона касательной, проведённой в этой точке к графику функции, то есть
.
Так как теория механизмов и машин имеет дело с именованными числами, то при определении величины тангенса необходимо учитывать масштабы по осям координат графика функции (рис. 4.4), тогда
.
Выберем горизонтальный отрезок произвольной длины и проведём из его левого конца наклонную прямую, параллельную касательной, а из правого конца – вертикальную прямую до пересечения с наклонной. Вычислим длину отрезка, полученного на вертикали и обозначенного на рис. 4.4 буквой . Построенный треугольник является прямоугольным с углом против вертикального катета, равным . Поэтому, записав из треугольника и подставив это отношение в предыдущее выражение, получаем
.
В правой части этого выражения переменной величиной является только , остальные образуют постоянное число, которое можно считать масштабом, то есть
.
Таким образом мы убедились, что отрезок в масштабе выражает производную в данной точке графика.
Для применения рассмотренной методики необходимо предварительно построить график или функции положения механизма, или график аналога скорости. Чтобы построить график производной, необходимо на продолжении оси абсцисс этого графика в левую сторону от оси ординат выбрать произвольный отрезок и на нём строить все треугольники, необходимые для определения отрезков . Все эти отрезки получаются на оси ординат, но каждый из них необходимо разместить на ординатной прямой соответствующего номера, а их концы соединить плавной кривой. Эта процедура даст искомый график.
Вопросы для самопроверки
1. Сформулируйте задачи кинематического анализа механизмов с низшими парами.
2. Перечислите методы исследования кинематики механизмов.
3. Что должно быть задано для исследования кинематики механизма?
4. В чём заключается сущность аналитического метода исследования кинематики?
5. Что называется масштабом в ТММ?
6. Что такое разметка механизма?
7. Для чего строится разметка?
8. Как определяются скорость и ускорение конца кривошипа?
9. Запишите векторные уравнения для построения планов скоростей и ускорений и объясните их составляющие. Какое правило механики положено в основу этих уравнений?
10. Как определяются скорости и ускорения центра масс шатуна?
11. Как определить угловые скорость и ускорение стержневого звена?
12. Какое правило математики положено в основу графического дифференцирования функции, заданной в виде графика?
13. Приведите пример построении графика производной при заданном графике функции.
14. Как определяются масштабы по осям координат при построении графика производной?
Лекция 8. Тема: Построение планов скоростей и ускорений механизма, образованного группой Ассура 2–го класса 1–го вида.
Тема: Построение планов скоростей и ускорений механизма, образованного группой Ассура 2–го класса 1–го вида.
Построение плана скоростей
Планы скоростей и ускорений механизма строятся после решения задачи о его положении, причём построение планов проводится для отдельных групп Ассура, которые образовали механизм. Вначале строится план скоростей (ускорений) группы, которая присоединена элементами своих внешних кинематических пар к ведущему звену и стойке, затем строятся планы скоростей (ускорений) второй и т.д. групп, взятых в той же последовательности, в какой они присоединяются при образовании механизма.
Рассмотрим двухкривошипный шарнирный четырёхзвенник. Данные: lOA = 0.07 м, lOC = 0.04 м, lBC = 0.08 м, lAB = 0.075 м, lBD = 0.04, j1 = 30°, угловая скорость кривошипа OA постоянна и равна w1 = 15 c – 1 (рис. 1).
План положения механизма
Сначала строим план заданного положения механизма. Масштаб длин принимаем равным ml = 0.001 м /мм. Вычисляем длины отрезков, изображающие на чертеже звенья.
Для каждого положения механизма определяются скорости точек графическим методом. Вначале определяем скорость точки A, принадлежащей ведущему звену, которое вращается равномерно с постоянной угловой скоростью w1. Скорость этой точки по модулю равна
и направлена перпендикулярно оси звена OA в сторону вращения. Отложим от произвольной точки p, называемой полюсом плана скоростей, отрезок (pa). Длину отрезка (pa) выбираем равной (OA). (pa) = (OA) = 70 мм. Вычисляем масштабный коэффициент скоростей:
Строим план скоростей для группы звеньев 2 и 3. Оба звена совершают плоскопараллельное движение. Из теоретической механики известно, что скорость любой точки B плоской фигуры геометрически складывается из скорости какой-нибудь точки A, принятой за полюс, и скорости, которую точка B получает при вращении фигуры вокруг этого полюса.В этой группе звеньев все пары вращательные. Определяем скорость точки B по следующим двум векторным уравнениям:
Определяем скорость точки B: uB = (pb)×mu = 128×0.015 = 1.92 м/c.
Определяем скорость точки D: uD = (pd)×mu = 169×0.015 » 2.54 м/c.
Определяем угловую скорость звена AB:
План скоростей механизма
Направление угловой скорости w2 звена AB может быть определено следующим образом. Мысленно прикладывая вектор к точке B, видим, что вращение звена 2 вокруг оси шарнира A, принятой за полюс, совпадает с направлением вращения часовой стрелки. Отмечаем нужное направление вращения на звене 2 в виде дуговой стрелки.
Определяем угловую скорость звена BC:
Направление угловой скорости w3 звена BC определяется таким же образом, как и w2. Мысленно прикладывая вектор к точке B, видим, что вращение звена 3 вокруг оси шарнира C, принятой за полюс, совпадает с направлением вращения часовой стрелки. Отмечаем нужное направление вращения звена 3 дуговой стрелкой.
Построение плана ускорений
Ускорения точек находятся методом плана ускорений. Вначале определяем скорость точки A, принадлежащей ведущему звену, которое вращается равномерно с постоянной угловой скоростью w1. Полное ускорение точки A определяется по формуле Так как e1 = 0, то тангенциальное ускорение a t A = 0. Тогда и ускорение точки A легко вычисляется: aA = w1 2 ×lOA. Затем строим план ускорений для группы звеньев 2 и 3. Так как движение этих звеньев плоское и все пары вращательные, то используем известную из теоретической механики теорему: ускорение любой точки B плоской фигуры геометрически складывается из ускорения какой-нибудь точки A, принятой за полюс, и ускорения, которое точка B получает при вращении фигуры вокруг этого полюса. Этот план строится по таким двум векторным уравнениям:
где — полное ускорение точки A, равное нормальному ускорению , так как звено 1 (кривошип) вращается равномерно и угловое ускорение равно нулю, следовательно равно нулю и тангенциальное ускорение ,
и направленное параллельно линии OA от точки A к точке O (к центру кривизны траектории);
— нормальное ускорение точки B во вращательном движении звена AB вокруг точки A, по модулю равное
и направленное параллельно линии AB от точки B к точке A ( );
— тангенциальное ускорение точки B в том же движении звена AB, по модулю равное
— ускорение точки C, равное нулю, так как звено 4 неподвижно;
— нормальное ускорение точки B во вращательном движении звена BC вокруг точки C, по модулю равное
и направленное параллельно линии BC от точки B к точке C ( );
— тангенциальное ускорение точки B в том же движении звена BC, по модулю равное
Построение плана ускорений ведём в следующей последовательности. Строим решение первого векторного уравнения, указанного выше, для чего от полюса плана p откладываем отрезок (pa), изображающий ускорение , параллельно линии OA. Длину отрезка (pa) принимаем равной 70 мм, отчего масштаб ускорений будет
От точки a откладываем отрезок (anBA), изображающий ускорение . Длина отрезка (anBA) вычисляется так:
Через точку nBA проводим направление ускорения — линию, перпендикулярную линии AB. Переходим к построению решения второго векторного уравнения, указанного выше. Для этого от полюса плана p откладываем вектор ускорения , но оно равно нулю, поэтому точка c совпадает с точкой p. От точки p откладываем отрезок (pnBC), изображающий ускорение . Длина отрезка (pnBC) вычисляется так:
Соединив точку d с полюсом плана p, получаем отрезок (pd), изображающий абсолютное ускорение точки D.
Величины абсолютных ускорений точек B и D определяются так:
По правилу подобия найдём ускорения центров масс подвижных звеньев. Точки S1, S2 и S3 находятся на серединах соответствующих звеньев. На плане ускорений это будут векторы: (ps1), (ps2) и (ps3). Определяем абсолютные величины ускорений этих центров масс:
Величина углового ускорения звена AB равна:
Направление углового ускорения e2 звена 2 (звена AB) может быть определено следующим образом. Перенося мысленно вектор в точку B, видим из точки A, что направление e2 совпадает с направлением вращения часовой стрелки. Обозначаем направление углового ускорения e2 на плане положения звена 2 дуговой стрелкой.
Величина углового ускорения звена BC равна:
Направление углового ускорения e3 звена 3 (звена BC) может быть определено таким же образом, как и e2. Перенося мысленно вектор в точку B, видим из точки C, что направление e3 совпадает с направлением вращения часовой стрелки. Обозначаем направление углового ускорения e3 на плане положения звена 3 дуговой стрелкой. План ускорений механизма приведён на рис. 3.