Что называется периодом синусоидальной эдс напряжения или тока
Основные параметры переменного тока: период, частота, фаза, амплитуда, гармонические колебания
Переменный ток — электрический ток, направление и сила которого изменяются периодически. Так как обычно сила переменного тока изменяется по синусоидальному закону, то переменный ток представляет собой синусоидальные колебания напряжения и силы тока.
Поэтому к переменному току применимо все то, что относится к синусоидальным электрическим колебаниям. Синусоидальные колебания — колебания, при которых колеблющаяся величина изменяется по закону синуса. В данной статье поговорим о параметрах переменного тока.
Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:
Есть и вспомогательные параметры:
Далее рассмотрим все эти параметры по отдельности и во взаимосвязи.
Период — время, в течение которого система, совершающая колебания, проходит через все промежуточные состояния и нале снова возвращается к исходному.
Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.
Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.
Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.
Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.
Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.
В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.
По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.
Угловая частота — число колебаний, совершаемых за 2пи сек.
За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:
Пользоваться числом колебаний на 2пи сек. (а не за 1 сек.) удобно потому, что в формулах, выражающих закон изменения напряжений и токов при гармонических колебаниях, выражающих индуктивное или емкостное сопротивление переменному току, и во многих других случаях частота колебаний n фигурируют вместе с множителем 2пи.
Фаза — состояние, стадия периодическою процесса. Более определенный смысл имеет понятие фаза в случае синусоидальных колебаний. На практике обычно играет роль не фаза сама по себе, а сдвиг фаз между какими-либо двумя периодическими процессами.
В данном случае под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.
На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе измеряется в радианах, долях периода, в градусах.
Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.
Амплитуда — наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.
Строго говоря, термин амплитуда относится только к синусоидальным колебаниям, но его обычно (не вполне правильно) применяют в указанном выше смысле ко всяким колебаниям.
Гармонические колебания — колебания, в которых колеблющаяся величина, например напряжение в электрической цепи, меняется во времени по гармоническому синусоидальному или косинусоидальному закону. Графически представляются кривой — синусоидой.
Реальные процессы могут лишь приближенно быть гармоническими колебаниями. Однако если колебания отражают наиболее характерные черты процесса, то такой процесс считают гармоническими, что существенно облегчает решение многих физических и технических задач.
Движения, близкие к гармоническим колебаниям, совершаются в различных системах: механических (колебания маятника), акустических (колебания столба воздуха в органной трубе), электромагнитных (колебания в LC-контуре) и др. Теория колебаний рассматривает эти различные по физической природе явления с единой точки зрения и определяет их общие свойства.
Графически гармонические колебания удобно представить с помощью вектора, вращающегося с постоянной угловой скоростью вокруг оси, перпендикулярной к этому вектору и проходящей через его начало. Угловая скорость вращения вектора соответствует круговой частоте гармонического колебания.
Векторная диаграмма одного гармонического колебания
Периодический процесс любой формы может быть разложен в бесконечный ряд простых гармонических колебаний с различными частотами, амплитудами и фазами.
Гармоника — гармоническое колебание, частота которого в целое число раз больше частоты некоторого другого колебания, называемого основным тоном. Номер гармоники указывает, во сколько именно раз частота ее больше частоты основного тона (например, третья гармоника — гармоническое колебание с частотой, втрое большей, чем частота основного тона).
Всякое периодическое, но не гармоническое (т. е. отличающееся по форме от синусоидального) колебание может быть представлено в виде суммы гармонических колебаний — основного тона и ряда гармоник. Чем больше рассматриваемое колебание отличается по форме от синусоидального, тем большее число гармоник оно содержит.
Мгновенное значение u и i
Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.
Действующие значения I, E и U
Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.
Так, действующим значением тока называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.
Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:
Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.
Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.
Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Синусоидальные ЭДС, напряжения и токи
В линейной электрической цепи при действии периодических ЭДС с одинаковым периодом Т спустя достаточно большой промежуток времени от начала действия этих ЭДС устанавливаются во всех участках цепи периодические токи и напряжения с тем же периодом Т. Величина f= 1/Т является частотой ЭДС, напряжения или тока. Частота численно равна числу периодов в единицу времени и измеряется в герцах (Гц).
Наибольший интерес представляют периодические ЭДС, напряжения и токи, являющиеся синусоидальными функциями времени:
Величины е (1.1), u(1.2), i (1.3) называют мгновенными ЭДС, напряжением и током. Их наибольшие значения Еm, Umи Imназывают а амплитудами. Величину ω = 2π/Т = 2πfназывают угловой частотой. Аргумент синуса, отсчитываемый от ближайшей предыдущей точки перехода синусоидальной величины через нуль от отрицательных к положительным ее значениям, называют фазой, величины — начальной фазой, соответственно, ЭДС, напряжения и тока.
На рис. 1.1. изображены синусоидальные напряжение и ток с одним и тем же периодом.
Рис. 1.1. Синусоидальные напряжение и ток с одним и тем же периодом
Необходимо обратить внимание на то, что положительные фазы и должны откладываться от начала координат влево. По оси абсцисс можно откладывать или время t, или пропор-циональную ему угловую величину ωt. Соответственно, периодом будет являться или Т, или 2.
Часть III. Цепи синусоидального тока
Тема 3. Цепи синусоидального тока
Переменный ток имеет большее распространение, чем постоянный.
Переменный ток – ток, периодически меняющий свое значение и направление. Наибольшее значение переменного тока – его амплитуда.
Переменный ток характеризуется:
Амплитуда – наибольшие (положительные или отрицательные) величины.
Период – время, в течение которого происходит полное колебание тока в проводнике.
Частота – обратно периоду.
Фаза – характеризует состояние переменного тока в любой момент времени.
Основным видом переменного тока является синусоидальный (гармонический) ток. Закон изменения такого тока описывается синусоидальной функцией.
В линейных электрических цепях, в которых действуют синусоидальные источники, все электрические параметры изменяются по синусоидальному закону.
ЭДС: .
Напряжение: .
Ток: ;
e(t), u(t), i(t) – мгновенные значения;
ω = 2π – угловая частота, [рад/с];
ƒ = 1 Т – циклическая частота, [Гц];
Любую синусоидальную функцию можно изобразить в виде графика, который называется графиком временных значений или временной диаграммой.
Расчет цепей синусоидального тока с использованием мгновенных значений требует громоздкой вычислительной работы и применим для простейших электрических цепей.
Для расчета цепей синусоидального тока синусоидальную функцию заменяют эквивалентной величиной.
где j = √ — 1 – мнимая единица.
– комплексная амплитуда.
– сопряженная комплексная амплитуда.
– поворотный множитель.
Последняя запись означает, что синусоидальное напряжение можно представить на комплексной плоскости в виде двух векторов, длина которых равна Um и которые равномерно вращаются со скоростями, равными ω в противоположные стороны.
Действующее значение синусоидальной функции – ее количественная оценка.
Действующие значения – среднеквадратичные за период значения синусоидальной функции, то есть, если:
то действующее значение:
Часто используются выражения, связывающие между собой амплитуду и действующее значение:
Действующее значение – это постоянная величина, которую обычно обозначают той же буквой, что и амплитуду, только без индекса m.
где a – проекция вектора на ось y в момент времени t.
рис. а рис. б
Любому равномерно вращающемуся радиус-вектору соответствует некоторая синусоидальная функция, и наоборот.
Посмотрим, как условный графический образ синусоидальной функции – радиус-вектор – может быть применим при расчетах цепей переменного тока. Определим ток:
если: и .
Проведем решение задачи с помощью радиус-векторов I1m и I2m , вращающихся с частотой ω, положение которых для момента времени t = 0 показаны на рисунке ниже и осуществим геометрическое суммирование этих радиус-векторов по правилу параллелограмма. Результирующий радиус-вектор Im будет вращаться с частотой ω и является изображением некоторой синусоидальной функцией времени.
Следовательно, i = i1 + i2 – геометрическое изображение искомого тока.
Измерив дугу суммарного радиус-вектора и, зная выбранный масштаб, можно определить амплитуду Im тока. Непосредственно по чертежу определяется и начальная фаза Ψ.
Рассмотренная совокупность радиус-векторов, изображающих синусоидальные функции времени, называется векторной диаграммой.
Для введения комплексного изображения перенесем радиус-вектор, изображающий синусоидальную функцию времени в декартовой плоскости на плоскость комплексных чисел. Для чего совместим ось x с осью действительных чисел Re, а ось y – с Im.
Любому вектору A, расположенному на комплексной плоскости, однозначно соответствует комплексное число, которое может быть записано в трех формах:
Все три формы записи в соответствии с формулой Эйлера равнозначны:
Переход от одной формы записи к другой:
где a1 – действительная часть;
Запишем в трех формах выражение для единичных действительных и мнимых комплексных чисел ( A = 1 ):
Отношение комплексной амплитуды напряжения к комплексной амплитуде тока называется комплексным сопротивлением:
Модуль комплексного сопротивления, называемый полным сопротивлением, равен отношению амплитуды напряжения к амплитуде тока, а аргумент Ψ комплексного сопротивления – разности начальных фаз напряжения и тока:
Закон Ома в комплексной форме соответственно для амплитудных и действительных значений:
.
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Синусоидальные Э.Д.С. и ток
Содержание:
Синусоидальные э.д.с. и ток:
Получение, передача и использование электрической энергии осуществляются в основном с помощью устройств и сооружений переменного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Наиболее широко применяют приемники электрической энергии, работающие на переменном токе.
Переменным электрическим током называется электрический ток, изменяющийся с течением времени (см. рис. 2.1, кривые 2, 3).
Периодический электрический ток, являющийся синусоидальной функцией времени, называется синусоидальным электрическим током.
Такой ток в практике обычно имеют в виду, когда говорят о переменном токе. В некоторых случаях ток изменяется по периодическому несинусоидальному закону.
В линейных электрических цепях переменный синусоидальный ток возникает под действием э. д. с. такой же формы. Поэтому для изучения электрических устройств и цепей переменного тока необходимо прежде рассмотреть способы получения синусоидальной э. д. с. и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.
Получение синусоидальной э.д.с.
Для получения э. д. с. синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности. Однако принципиально синусоидальную зависимость э. д. с. от времени можно получить, вращая с постоянной частотой в равномерном магнитном поле проводник в виде прямоугольной рамки (рис. 12.1).
Рис. 12.1. Прямоугольная рамка в магнитном поле
Вращение витка в равномерном магнитном поле
Согласно формуле (10.5), э. д. с. в рамке, имеющей два активных проводника длиной l,
При равномерном вращении рамки линейная скорость проводника не изменяется:
а угол между направлением скорости и направлением магнитного поля изменяется пропорционально времени:
Угол β определяет положение вращающейся рамки относительно плоскости, перпендикулярной направлению магнитной индукции. (Положение рамки в момент начала отсчета времени t = 0 характеризуется углом β = 0.) Поэтому э. д. с. в рамке является синусоидальной функцией времени
Наибольшей величины э. д. с. достигает при угле
В рассмотренном случае синусоидальное изменение э. д. с. достигается за счет непрерывного изменения угла, под которым проводники пересекают линии магнитной индукции. Однако такой способ получения э. д. с. в практике не применяется, так как трудно создать равномерное поле в достаточно большом объеме.
Генератор переменного тока
В электромашинных генераторах переменного тока промышленного типа синусоидальная э. д. с. получается при постоянном угле, но в неравномерном магнитном поле.
Магнитное поле генератора (радиальное) в воздушном зазоре между статором и ротором направлено по радиусам окружности ротора (рис. 12.2, а). Магнитная индукция вдоль воздушного зазора распределена по закону, близкому к синусоидальному. Такое распределение достигается соответствующей формой полюсных наконечников. Синусоидальный закон распределения магнитной индукции вдоль воздушного зазора показан на рис. 12.2, б в развернутом виде.
Рис. 12.2. Схема генератора переменного тока. Распределение магнитной индукции вдоль воздушного зазора
Рис. 12.3. Схема генератора переменного тока с двумя парами полюсов на роторе
Рис. 12.4. Схема генератора с тремя витками (обмотками)
В любой точке воздушного зазора, положение которой определяется углом β, отсчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением
Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна относится к северному полюсу, а другая — к южному.
Наибольшую величину магнитная индукция имеет под серединой полюсов, т. е. при углах и
На нейтрали (при β = 0 и β = 180°) магнитная индукция равна нулю (В = 0).
На рис. 12.3 показана конструктивная схема генератора переменного тока с двумя парами полюсов, расположенных на роторе, а проводники обмотки, где наводится э. д. с., помещены в пазах сердечника статора.
Отметим еще одну разновидность генераторов переменного тока — генератор с тремя обмотками (трехфазный генератор), которые на схеме рис. 12.4 представлены тремя витками на роторе (у турбогенераторов и гидрогенераторов эти обмотки находятся на статоре). Плоскости витков находятся под углом 120° друг к другу.
Э.Д.С. в обмотке генератора
При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой (10.4),
Подставляя выражение магнитной индукции (12.3), получим
При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая э. д. с.
Уравнение э. д. с. можно записать так:
Учитывая формулу (12.1), получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t = 0), когда его плоскость совпадает с нейтралью:
Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.
Рис. 12.5. График синусоидальной э. д. с.
В прямоугольной системе координат э. д. с. можно изобразить в функции угла или в функции времени t. Зависимость и можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.
Если обмотку генератора замкнуть через сопротивление, то в образовавшейся цепи возникает синусоидальный ток, повторяющий по форме кривую э. д. с.
Полагая сопротивление цепи линейным, равным R, получим для тока такое выражение:
где — наибольшая величина тока.
Напряжение и ток синусоидальной формы можно получить при помощи генераторов, не имеющих вращающихся частей и магнитных полюсов, например ламповых генераторов.
Задача 12.1.
Э. д. с. электромашинного генератора выражается уравнением .
Определить число пар полюсов этого генератора, если известна частота вращения ротора n = 75 об/мин.
На какой угол в пространстве поворачивается ротор генератора за 1/4 периода?
Решение. Период э. д. с., наводимой в обмотке генератора (см. рис. 12.2), имеющего одну пару полюсов, равен времени полного оборота ротора. Угловую скорость вращения ротора можно определить отношением полного угла, соответствующего одному обороту ротора, к периоду:
Однако генератор может иметь не одну, а p пар полюсов (на рис. 12.3 p = 2). Полный цикл изменения э. д. с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с p = 1), поэтому при одинаковой частоте вращения ротора период э.д. с. будет в p раз короче, а частота в р раз больше.
Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая частоту вращения ротора.
Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в секунду, а при р > 1
где n — частота вращения ротора, об/мин.
Из уравнения э. д. с. известна угловая частота ω = 314 рад/с; при этом
При частоте вращения ротора n = 75 об/мин
При р = 1 за 1/4 периода ротор повернется на 1/4 окружности, т. е. в угловой мере на 90º. При р = 40 угол поворота ротора за 1/4 периода будет в р раз меньше:
Уравнения и графики синусоидальных величин
Анализ электрических цепей переменного тока невозможно проводить без выражения э. д. с. токов, напряжений их уравнениями. Для наглядности применяются графики этих величин в прямоугольной системе координат. Поэтому рассмотрим уравнения и графики синусоидальных величин более подробно.
Уравнения и графики
Уравнение (12.4) записано для случая, когда начало отсчета времени (t = 0) совпадает с моментом прохождения витка через нейтраль (на рис. 12.2, а положение 1, в котором плоскость витка совпадает с нейтралью).
На рис. 12.4 положение витков тоже соответствует началу отсчета времени (t = 0) и определяется для каждого из них углом, отсчитанным от нейтрали до плоскости витка: для первого витка этот угол для второго — и третьего —
При вращении ротора э. д. с. будет наводиться во всех витках, но уравнения э.д.с. не будут одинаковыми. Действительно, при = 0 э. д. с. в витках:
Эта зависимость э. д. с. от начального положения витка учитывается введением в уравнение начального угла.
С учетом начального угла э. д. с. витка С выражается уравнением
Таким образом, в общем виде, уравнение э. д. с. должно быть записано так:
Из этого уравнения можно определить величину э. д. с. в любой момент при произвольном начальном положении витка.
На рис. 12.6 в соответствии с уравнением (12.6) построены графики э.д.с.трех витков, отличающихся в момент начала отсчета времени расположением относительно нейтральной плоскости (eA при eC при eB при ).
Рис. 12.6. Графики э. д. с., сдвинутых по фазе
Характеристики синусоидальных величин
Уравнением и графиком задаются все характеристики синусоидально изменяющейся величины: амплитуда, угловая частота, начальная фаза, период, частота и для любого момента времени мгновенная величина.
Далее приведены определения этих характеристик, и они показаны на рис. 12.7 применительно к синусоидальной э. д. с. Определения распространяются на все величины, изменяющиеся по синусоидальному закону (ток, напряжение и др.).
Рис. 12.7. К вопросу о характеристиках периодической э. д. с.
Мгновенная величина (или мгновенное значение) э. д. с. е — величина э. д. с. в рассматриваемый момент времени. Мгновенная э. д. с. определяется уравнением (12.6) при подстановке в него времени t, прошедшего от начала отсчета до данного момента.
Период Т — наименьший интервал времени, по истечении которого мгновенные величины периодической э. д. с.. повторяются. Если аргумент синусоидальной функции выражается в углах, то период выражается постоянной величиной 2π.
Частота f — величина, обратная периоду:
т. е. частота равна числу периодов переменной э. д. с. в секунду. Частота выражается в герцах (Гц): 1 Гц = 1/с.
Амплитуда Еm — наибольшая величина, которую принимает э. д. с. в течение периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу равному , где k — любое целое число или нуль.
Фаза (фазовый угол ) — аргумент синусоидальной э.д.с., отсчитываемый от ближайшей предшествующей точки перехода э. д. с. через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной э. д. с.
Начальная фаза ψ — фаза синусоидальной э.д.с. в начальный момент времени.
Две синусоидальные величины, имеющие разные начальные фазы, называются сдвинутыми по фазе.
Угловая частота ω — скорость изменения фазы. За время одного периода Т фазовый угол равномерно изменяется на 2π, поэтому
Задача 12.4.
Переменный электрический ток задан уравнением
Определить период, частоту этого тока и мгновенные величины его при t = 0; t1 = 0,152 с. Построить график тока.
Решение. Уравнение синусоидального тока в общем случае имеет вид
Сопоставляя это уравнение с заданным частным уравнением тока, устанавливаем, что амплитуда Im = 100 А, угловая частота ω = 628 рад/с, начальная фаза ψ = —60°. Период
Частота
Рис. 12.8. К задаче 12.4
Мгновенные величины тока найдем, подставив в уравнение тока заданные значения времени:
при t = 0
при t1 = 0,152 с
Синусоидальная величина через 360° повторяется, поэтому мгновенный ток при угле будет таким же, как и при угле :
Для построения графика нужно определить ряд мгновенных токов, соответствующих различным моментам времени (рис. 12.8).
Векторные диаграммы
До сих пор величины, изменяющиеся по синусоидальному закону, задавали уравнениями и изображали графиками в прямоугольной системе координат. При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.
Обоснование векторной диаграммы
Предположим, что ток задан уравнением
Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:
Рис. 12.10. К вопросу о векторной диаграмме
Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе ψ (рис. 12.10).
Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени:
Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом
Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.
Например, для t = t1
в общем случае
Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж: в начальном положении.
Построение векторной диаграммы
Вращая вектор Im‘ против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.
При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.
В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.
Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой. Например, напряжение и ток в электрической цепи выражаются уравнениями
Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока
то
Рис. 12.11. Векторная диаграмма тока и напряжения
Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.
Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.
Сложение и вычитание векторов
Простота и наглядность векторных диаграмм — не единственное и не главное достоинство способа изображения синусоидальных величин. Требуется сложить, например, два тока, заданных уравнениями
Выражение суммы
оказывается громоздким, из него не видны амплитуда и начальная фаза результирующего тока.
Можно графически сложить два заданных тока, построив их в одной системе координат и для ряда аргументов, найдя сумму двух ординат. Через полученные точки проведем кривую суммы, увидим, что эта кривая тоже синусоида с таким же периодом, как и слагаемые. По кривой общего тока можно найти амплитуду и начальную фазу. Громоздкость и неудобство такого сложения очевидны.
Очень просто сложение и вычитание синусоидальных величин осуществляется по правилам сложения и вычитания векторов.
Рис. 12.12. Сложение векторов
Сложим два заданных тока i1 и i1 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:
Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллельно самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.
Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).
Вычитание одного вектора из другого выполняют сложением прямого вектора — уменьшаемого и обратного — вычитаемого (рис. 12.13):
Рис. 12.13. Вычитание векторов
Рис. 12.14. Частные случаи сложения векторов
При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.
Задача 12.7. Два тока заданы уравнениями
Найти уравнения токов:
Решение. Решение задачи проще всего выполнять графически в векторной форме. Для этого изобразим векторы заданных токов. Масштаб тока выбираем так, чтобы наибольший вектор поместился на имеющемся листе бумаги, одновременно учитывая возможность отчетливого изображения наименьшего вектора.
При разборе решения рекомендуется провести построения по рис. 12.15 на листе миллиметровой бумаги в масштабе В этом масштабе длина векторов
Длину вектора суммы определяют графически (рис. 12.15, а):
Рис. 12.15. К задаче 12.7
Начальная фаза этого вектора по чертежу
Уравнение суммы токов
В таком же порядке найдены векторы разностей токов (рис. 12.15, б, в). Вычитаемые векторы взяты в противофазе с заданными.
После измерения длин векторов и начальных фаз напишем уравнения разностей токов:
Действующая и средняя величины переменного тока
О переменном токе все известно, если задано его уравнение или график. Однако в практике пользоваться уравнениями или графиками токов затруднительно.
Переменный ток обычно характеризуется его действующей величиной I. При изучении выпрямительных устройств и электрических машин пользуются средними величинами э. д. с., тока, напряжения.
Действующая величина переменного тока
При определении действующей величины переменного тока можно исходить из какого-либо его действия в электрической цепи (теплового, механического взаимодействия проводов с токами).
На рис. 12.18 изображены графики двух токов: постоянного 1 и переменного 2, причем величина постоянного тока равна амплитуде переменного.
Постоянный ток, равный амплитуде переменного, выделит больше тепла в одном и том же элементе цепи за однj и то же время, так как переменный ток в течение полупериода меньше постоянного, и лишь одно мгновение эти токи равны.
Действующая величина переменного тока I численно равна величине постоянного тока, который в одном и том же элементе цепи за время периода Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток.
Действующая величина переменного тока I меньше амплитуды (прямая 3 на рис. 12.18).
Рис. 12.18. К определению действующей величины переменного тока
Определим количество тепла, выделяемого за период Т постоянным током, равным I, и переменным током (см. рис. 12.18) в элементе цепи с сопротивлением R:
Приравнивая найдем
Действующая величина периодического тока является его средней квадратичной за период.
Ее можно найти из уравнения (12.9), но для наглядности воспользуемся графическим решением поставленной задачи.
Среднеквадратичную величину переменного тока за период можно представить в виде квадратного корня из суммы очень большого числа ординат кривой i 2 (t), разделенной на число ординат n:
где в числителе подкоренного выражения представлена сумма квадратов ряда мгновенных токов в течение периода, n — число этих значений, стремящееся к ∞.
На рис. 12.19 показаны ряд положений вращающегося с угловой скоростью ω вектора тока Im и соответствующие им мгновенные токи i. Эти положения отмечены точками 0, 1, 2 и т. д. на окружности, которую описывает конец вектора Im.
Рассмотрим два положения вектора Im (отмечены точками 2 и 8), отстоящие по окружности на 90°, т. е. находящиеся соответственно в первой и второй четвертях окружности. Прямоугольные треугольники 6′-2-2′ и 6′-8-8′ равны, так как равны их стороны: 2-2′ = 6′-8′ и 2′-6′ = 8-8′. Из этих треугольников следует:
Рис. 12.19. К определению действующей и средней величины синусоидального тока
Каждому положению вектора Im в первой четверти соответствует другое его положение во второй, для которых можно написать аналогичное выражение. Такие рассуждения можно провести для другой полуокружности, т. е. распространить их на второй полупериод тока, причем квадраты отрицательных мгновенных токов будут положительны, поэтому
Подставляя это выражение в (12.10), получим
Таким образом, действующая величина синусоидального тока меньше его амплитуды в раза.
Понятие о действующей величине можно распространить на все синусоидальные функции и, следовательно, говорить о действующей величине напряжения, э. д. с.
Действующие величины тока, напряжения измеряются электроизмерительными приборами. Номинальные токи и напряжения электротехнических устройств выражаются действующими величинами. Введя понятие о действующей величине, в дальнейшем векторные диаграммы будем строить для действующих величин напряжений и токов.
Отношение амплитуды к действующей величине называется коэффициентом амплитуды Ка. Для синусоидальной функции этот коэффициент равен ; если кривая тока или напряжения имеет более острую форму, чем синусоида, то Ка > , в противном случае Ка
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.