Что называется основанием масштаба
Масштабы
Масштабы.
Понятие карты, плана, профиля.
При изображении физической поверхности Земли на картах её проектируют на поверхность эллипса, а затем его разворачивают в плоскость. Таким образом, картой называют уменьшенное и закономерно искаженное изображение Земли или отдельных частей её поверхности на плоскости.
На топографических картах все объекты земного изображаются максимальной точностью, независимо от значимости объекта.
Стандартные масштабы
Масштабы топокарт: Масштабы планов:
Так, при аЬ=5см и АоВо=250м имеем
(1.1)
При сравнении численных масштабов различных планов употребляют термины: «мельче» и «крупнее». Если N1
Линейный масштаб используют для измерения с небольшой точностью длин отрезков на плане. Он представляет собой прямую линию, разделенную на равные отрезки. Длина одного отрезка называется основанием масштаба. Она соответствует определенному числу метров на горизонтальном проложении. На рисунке 1.3 основание принято равным 2см, что при численном масштабе 1:5000 соответствует 100м на горизонтальном проложении. Левое крайнее основание линейного масштаба разделено на более мелкие деления.
Рис.1.3 Линейный масштаб
Поперечный масштабприменяют для измерений и построений повышенной точности. Для каждого масштаба можно построить свой поперечный масштаб. Поперечный масштаб с основанием 2см называется нормальным сотенным поперечным масштабом, то есть пригодным для любого масштаба.
Поперечный масштаб строят следующим образом:
На прямой линии откладывают ряд отрезков по 2см, которые называют основанием масштаба. Из концов оснований восстанавливают перпендикуляры произвольной длины. На крайних перпендикулярах измерителем откладывают по 10 отрезков одинаковой длины и соединяют их концы. Крайнее левое основание сверху и снизу делят на 10 одинаковых частей методом деления отрезка на пропорциональные части. Затем соединяют верхние и нижние точки (рис. 1.4)
|
Для пользования поперечным масштабом необходимо мысленно оцифровать его деления исходя из масштаба плана или карты. Так если масштаб плана1:5OO, то основанием равно 10м деление равно 1 м и наименьшее деление 0,1м.
Измеритель располагают таким образом, чтобы правая игла находилась на одной из вертикальных линий, а левая на трасверсале. После чего считают,
сколько целых (к), десятых (п) и сотых (i) долей основания содержится между углами и исходя из ранее выполненной оцифровки, вычисляют расстояние.
Для случая приведенного на рис. 1.5 имеет к=1; п=4; i=3,5 масштаб 1:500, а следовательно:
S=1 * 100+4(0,1 * 100)+3,5(0,01 * 100)=143,5м
Невооруженный глаз человека способен на чертеже, на расстоянии 20-25см увидеть точку равную 0,1мм. Поэтому точностью масштаба называют длину горизонтальной проекции на местности, соответствующую 0,1мм на карте или плане. Для масштаба 1:500; 1:1000; 1:10000; 1:25000; точность масштаба соответственно равно 0,05м; 0,1м; 1,0м; 2,5м.
Пример1. Дано расстояние между двумя точками на карте равное 56,4мм. Определить длину горизонтального проложения соответствующей линии местности, если масштаб карты равен 1:2000.
Решение. Вычисление производится по формуле
где— знаменатель численного масштаба, показывающий во сколько раз линии местности уменьшены при их изображении на карте;
— длина линии на плане или карте;
Пример2. Дано горизонтальное проложение линий местности равное 78,0м. Определить с точностью 0,1 мм длину соответствующей линии на карте в масштабе 1:2 000
Решение. Вычисление выполняют по формуле:
=78,0м=78000мм, то =78000:2000=39,0мм на карте масштаба 1:2000.
Пример3. Определить длину отрезка на плане масштаба 1:1000, если длина линии на местности равна 35.6м.
Так же как и в предыдущей задаче необходимо мысленно оцифровать деления поперечного масштаба. Так, если масштаб плана 1:1000, то основание поперечного масштаба равно 20 м., АВ=2м и наименьшее деление (а1 в1) равно 0.2м. А затем суммированием этих отрезков набрать длину линии на поперечном масштабе. Т.е.35.6:20м =1 (целое основание масштаба). Осталась длина линии 15.6. Ее делим на цену деления основания масштаба 15.6:2м=7 (целых делений основания масштаба. 7х2м=14м. 15.6-14м=1.6м. 1.6м:0.2м=8 (наименьших делений масштаба). После этого устанавливаем измеритель на поперечном масштабе так, чтобы между иголками измерителя уложилось 1 целое основание масштаба, 7 целых целений основания масштаба и 8 наименьших делений масштаба.
Пример4.На карте масштаба 1:2000 был измерен отрезок, длинной 2.5 см. Найти длину линии на местности, соответствующую этому отрезку.
Пример5. Найти длину отрезка на плане масштаба 1:500, если длина горизонтального проложения линии на местности 28.50м.
В масштабе 1:500 1см на плане соответствует 5м на местности. По условию задачи на местности 28.5м. Следовательно
Пример6.Определить точность масштаба 1:10 000.
Решение. Так как точность масштаба это длина горизонтальной проекции линии на местности, соответствующая 0.1мм на карте или плане, необходимо вычислить длину линии на местности, соответствующую 0.1мм на карте или плане. По аналогии с предыдущими задачами рассуждаем так 1см на карте масштаба 1:10 000 соответствует 100м на местности, соответственно
Пример7: Перевести численный масштаб 1:10000 в пояснительный.
Решение : Для перевода численного масштаба в пояснительный необходимо от сантиметров в знаменателе перейти к метрам;
Вопросы для самопроверки:
1. Что изучает геодезия?
3. Какие задачи решает инженерная геодезии?
4. Что представляет собой действительная фигура Земли?
5. Почему изображение фигуры Земли заменяют референц-эллипсоидом или шаром?
6. Что такое уровенная поверхность?
7. Что называется планом?
8. Что называется картой?
9. В чем отличия между картой и планом?
10. Что называется профилем местности?
11. Что называется масштабом?
12. Что представляют собой численный и пояснительный масштабы?
13. Перечислите масштабы топографических карт и планов.
14. Что такое точность масштаба?
15. Как построить нормальный сотенный поперечный масштаб?
Масштаб
Понятие наиболее распространено в геодезии, картографии и проектировании — отношение натуральной величины объекта к величине его изображения. Человек не в состоянии изобразить большие объекты, например, дом, в натуральную величину, поэтому, при изображении большого объекта в рисунке, чертеже, макете и так далее, человек уменьшает величину объекта в несколько раз: в два, пять, десять, сто, тысяча и так далее. Число, показывающее, во сколько раз уменьшен изображенный объект, есть масштаб. Масштаб применяется и при изображении микромира. Человек не может изобразить живую клетку, которую рассматривает в микроскоп, в натуральную величину и поэтому увеличивает величину ее изображения в несколько раз. Число, показывающее, во сколько раз произведено увеличение или уменьшение реального явления при его изображении, определено как масштаб.
Содержание
Масштаб в геодезии, картографии и проектировании
Масштаб показывает, во сколько раз каждая линия, нанесенная на карту или чертёж, меньше или больше её действительных размеров. Есть три вида масштаба: численный, именованный, графический.
Масштабы на картах и планах могут быть представлены численно или графически.
Численный масштаб записывают в виде дроби, в числителе которой стоит единица, а в знаменателе — степень уменьшения проекции. Например, масштаб 1:5 000 показывает, что 1 см на плане соответствует 5 000 см (50 м) на местности.
Более крупным является тот масштаб, у которого знаменатель меньше. Например, масштаб 1:1 000 крупнее, чем масштаб 1:25 000.
Графические масштабы подразделяются на линейные и поперечные. Линейный масштаб — это графический масштаб в виде масштабной линейки, разделённой на равные части. Поперечный масштаб — это графический масштаб в виде номограммы, построение которой основано на пропорциональности отрезков параллельных прямых, пересекающих стороны угла.Поперечный масштаб применяют для более точных измерений длин линий на планах. Поперечным масштабом пользуются следующим образом: откладывают на нижней линии поперечного масштаба замер длины таким образом, чтобы один конец (правый) был на целом делении ОМ, а левый заходил за 0. Если левая ножка попадает между десятыми делениями левого отрезка (от 0), то поднимаем обе ножки измерителя вверх, пока левая ножка не попадёт на пересечение к-либо трансвенсали и какой-либо горизонтальной линии. При этом правая ножка измерителя должна находиться на этой же горизонтальной линии. Наименьшая ЦД = 0,2 мм, а точность — 0,1.
Точность масштаба — это отрезок горизонтального проложения линии, соответствующий 0,1 мм на плане. Значение 0,1 мм для определения точности масштаба принято из-за того, что это минимальный отрезок, который человек может различить невооруженным глазом. Например, для масштаба 1:10 000 точность масштаба будет равна 1 м. В этом масштабе 1 см на плане соответствует 10 000 см (100 м) на местности, 1 мм — 1 000 см (10 м), 0,1 мм — 100 см (1 м).
Масштабы изображений на чертежах должны выбираться из следующего ряда: [1]
Масштабы уменьшения | 1:2; 1:2,5; 1:4; 1:5; 1:10; 1:15; 1:20; 1:25; 1:40; 1:50; 1:75; 1:100; 1:200; 1:400; 1:500; 1:800; 1:1 000 |
Натуральная величина | 1:1 |
Масштабы увеличения | 2:1; 2,5:1; 4:1; 5:1; 10:1; 20:1; 40:1; 50:1; 100:1 |
При проектировании генеральных планов крупных объектов допускается применять масштабы 1:2 000; 1:5 000; 1:10 000; 1:20 000; 1:25 000; 1:50 000.
В необходимых случаях допускается применять масштабы увеличения (100n):1, где n — целое число.
Масштаб в фотографии
При фотосъёмке под масштабом понимают отношение линейного размера изображения, полученного на фотоплёнке или светочувствительной матрице, к линейному размеру проекции соответствующей части сцены на плоскость, перпендикулярную к направлению на камеру.
Некоторые фотографы измеряют масштаб как отношение размеров объекта к размерам его изображения на бумаге, экране или ином носителе. Правильная методика определения масштаба зависит от контекста, в котором используется изображение.
Масштаб имеет важное значение при расчете глубины резко изображаемого пространства. Фотографам доступен очень широкий диапазон масштабов — от практически бесконечно малого (например, при съемке небесных тел) до очень крупного (без использования специальной оптики возможно получение масштабов порядка 10:1).
Под макрофотографией традиционно понимают съёмку в масштабе 1:1 или крупнее. Однако с широким распространением компактных цифровых фотоаппаратов этим термином стали также называть съёмку расположенных близко к объективу (как правило, ближе 50 см) мелких объектов. Связано это с необходимым изменением режима работы системы автофокуса в таких условиях, однако с точки зрения классического определения макросъёмки такое толкование является неверным.
Масштаб в моделизме
Для каждого вида масштабного (стендового) моделизма определены масштабные ряды, состоящие из нескольких масштабов разной степени уменьшения, причём для разных видов моделизма (авиамоделизм, судомоделизм, железнодорожный, автомобильный, военной техники) определены свои, исторически сложившиеся, масштабные ряды, которые обычно не пересекаются.
Масштаб в моделизме исчисляется по формуле:
При масштабе 1/72, и параметре оригинала 7500 мм, решение будет выглядеть;
7500 мм / 72 = 104,1 мм
Полученное значение 104,1 мм, есть искомое значение при масштабе 1/72
Масштаб времени
В программировании
В операционных системах с разделением времени чрезвычайно важную роль играет предоставление отдельно взятым задачам так называемого «режима реального времени», при котором обработка внешних событий обеспечивается без дополнительных задержек и пропусков. Для этого употребляется также термин «реальный масштаб времени», однако это терминологическая условность, не имеющая к исходному значению слова «масштаб» никакого отношения.
В кинотехнике
Масштаб времени — количественная мера замедления или ускорения движения, равная отношению проекционной частоты кадров к съёмочной. Так, если проекционная частота кадров равна 24 кадра в секунду, а киносъёмка производилась на 72 кадра в секунду, масштаб времени равен 1:3. Масштаб времени 2:1 означает ускоренное вдвое по сравнению с обычным протекание процесса на экране.
В математике
Масштабы изображений на чертежах должны выбираться из следующего ряда (масштабы ГОСТ 2.302-68): Масштабы уменьшения 1 : 2; 1 : 2,5; 1 : 4; 1 : 5; 1 : 10; 1 : 15; 1 : 20; 1 : 25; 1 : 40; 1 : 50; 1 : 75; 1 : 100; 1 : 200; 1 : 400; 1 : 500; 1 : 800; 1 : 1000 Натуральная величина 1 : 1 Масштабы увеличения 2 : 1; 2.5,5 : 1; 4 : 1; 5 : 1; 10 : 1; 20 : 1; 40 : 1; 50 : 1; 100: 1 см. например Быстро-медленная система
Масштаб-число,показывающее, во сколько раз уменьшены или увеличены настоящие размеры на чертеже.
Масштаб. Виды масштабов. Точность масштаба
Рис.2.2 Линейный масштаб
По линейному масштабу расстояния измеряют с точностью 0,0 2-0,03 основания или примерно 0,5мм.
Поперечный масштаб – это график или номограмма, построенный с использованием метода пропорционального клина. Его применяют для измерений и построений на картах с повышенной точностью. Обычно его гравируют на металлических линейках или транспортирах, такие линейки называют масштабными. Он может быть построен и на чертежной бумаге. Поперечный масштаб устроен следующим образом. Он имеет вид прямоугольника, разделенного вертикальными, горизонтальными и наклонными линиями. Нижняя горизонтальная линия разделена на отрезки равные 2см, называемые основаниями масштаба, они пронумерованы: ниже линии оснований масштаба на правом краю первого основания подписан ноль, далее 1, 2, 3 и т.д., на левом краю первого основания – 1. Через концы оснований проведены перпендикуляры, которые разделены на 10 частей горизонтальными линиями с расстояниями между ними 2, 2,5 или 3мм. Нижняя и верхняя линии первого основания разделены на 10 частей. Ноль нижнего основания соединен наклонной линией с первым слева от нулевого перпендикуляра делением верхней линии, первый слева нижний со вторым слева верхним и т.д., 9-й нижний с последним (десятым) верхним. Наклонные линии называют трансверсалями. Таким образом, левая часть графика имеет вид горизонтальных и наклонных линий. Фигуры между нулевым перпендикуляром и первой к нему трансверсалью и первым слева перпендикуляром и ближайшей к нему трансверсалью имеют вид пропорционального клина. Расстояния на горизонтальных линиях между смежными трансверсалями составляют десятую долю основания, а между нулевой вертикальной линией и трансверсалями изменяется от одной сотой на первой горизонтальной линии до одной десятой доли основания на последней – верхнем основании (рис.1б). Так как первое основание разделено на десять частей и перпендикуляр к нему разделен также на десять частей, то минимальное расстояние между вертикальной и наклонной линиями клина на горизонтальной линии составляет одну сотую долю основания, поэтому такой поперечный масштаб называют сотенным. Поперечный масштаб строят в следующем порядке. На прямой линии, как и при построении линейного масштаба, откладывают несколько раз основание масштаба равное 2см. Основания нумеруют: слева от нуля 1, справа – 1, 2,3 и т.д. В конечных точках основания восстанавливают перпендикуляры длиной, равной основанию, или большей длины. Крайние перпендикуляры делят на десять частей, и через полученные точки проводят
Рис. 2.3. Линейный и поперечный масштабы
прямые линии, параллельные линии оснований. Нижнюю и верхнюю линии первого основания делят на десять равных частей. Полученные точки соединяют следующим образом: нулевую точку нижнего основания с первым верхним слева, первую нижнюю – со второй верхней и т.д. девятую нижнюю с десятой верхней, как показано на рис.1б. С помощью поперечного масштаба можно измерить длину отрезка на плане (карте) с точностью половины наименьшего деления клина, т.е. 0,1мм. Для отложения на плане измеренного на местности расстояния (горизонтального проложения), его выражают в долях основания масштаба (целых и дробных) делением на величину основания в заданном масштабе, наносят на график и с него циркулем переносят на план (карту).
Дата добавления: 2015-03-19 ; просмотров: 16761 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Решение задач по топографическим планам
Масштабы: численный, линейный и поперечный
Масштабом
горизонтальным проложением линии
Применяется три типа масштаба:
численный, линейный и поперечный.
Численным масштабом
Численный масштаб – величина неименованная. Он записывается так: 1:1000, 1:2000, 1: 5000 и т.д., причём в такой записи 1000, 2000 и 5000 называется знаменателем масштаба М.
Численный масштаб говорит о том, что в одной единице длины линии на плане (карте ) содержится точно столько же единиц длины на местности. Так, например, в одной единице длины линии на плане 1:5000 содержится точно 5000 таких же единиц длины на местности, а именно: один сантиметр длины линии на плане 1:5000 соответствует 5000 сантиметрам на местности (т.е. 50 метрам на местности); в одном миллиметре длины линии на плане 1:5000 содержится 5000 миллиметров на местности (т.е. в одном миллиметре длины линии на плане 1:5000 содержится 500 сантиметров или 5 метров на местности) и т.д.
При работе с планом в ряде случаев пользуются линейным масштабом.
Линейный масштаб
Рис.1
Основанием линейного масштаба называется отрезок АВ линейного масштаба (основная доля масштаба), равный обычно 2 см. Он переводится в соответствующую длину на местности и подписывается. Крайнее левое основание масштаба делят на 10 равных частей.
Наименьшее деление основания линейного масштаба равно 1/10 основания масштаба.
Пример: для линейного масштаба (использующегося при работе на топографическом плане масштаба 1:2000), показанного на рисунке 1, основание масштаба АВ равно 2 см (т.е. 40 метрам на местности), а наименьшее деление основания равно 2 мм, что в масштабе 1:2000 соответствует 4 м на местности.
Отрезок cd (рис. 1), взятый с топографического плана масштаба 1:2000, состоит из двух оснований масштаба и двух наименьших делений основания, что, в итоге, соответствует на местности 2х40м+2х2м = 88 м.
Поперечный масштаб
Основание AB нормального поперечного масштаба равно, как и в линейном масштабе, также 2 см. Наименьшее деление основания равно CD =1/10 АВ= 2мм. Наименьшее деление поперечного масштаба равно cd = 1/10 CD =1/100 АВ = 0,2мм (что следует из подобия треугольника BCD и треугольника Bcd).
Таким образом, для численного масштаба 1:2000 основание поперечного масштаба будет соответствовать 40 м, наименьшее деление основания (1/10 основания) равно 4 м, а наименьшее деление масштаба 1/100 АВ равно 0,4 м.
Остановимся на одной из важнейших характеристик понятия «масштаб».
Точностью масштаба называется горизонтальный отрезок на местности, который соответствует величине 0,1 мм на плане данного масштаба. Эта характеристика зависит от разрешающей способности невооруженного человеческого глаза, которая (разрешающая способность) позволяет рассмотреть минимальное расстояние на топографическом плане в 0.1мм. На местности эта величина будет уже равна 0.1 мм х М, где М – знаменатель масштаба.
Рис.2
Поперечный масштаб, в частности, позволяет измерить длину линии на плане (карте) масштаба 1:2000 именно с точностью данного масштаба.
Пример: в 1 мм плана 1:2000 содержится 2000 мм местности, а в 0,1мм, соответственно, 0,1 x М (мм) = 0.1 х 2000 мм = 200 мм = 20 см, т.е. 0,2 м.
Поэтому при измерении (построении) на плане длины линии ее значение следует округлить с точностью масштаба. Пример: при измерении (построении) линии длиной 58,37 м (рис. 3), ее значение в масштабе 1:2000 (с точностью масштаба 0,2 м) округляется до 58,4 м, а в масштабе 1:500 (точность масштаба 0,05 м) – длина линии округляется уже до 58,35 м.
Рис.3
Чтение
топографических планов
Для пользования топографическими планами необходимо изучить условные знаки, принятые для данного масштаба. Условные знаки – графические обозначения, которые показывают местоположение предметов и явлений, а также их количественные и качественные характеристики. Они издаются в виде отдельных таблиц или таблиц на учебных планах. Условные знаки делятся на масштабные (контурные), и внемасштабные.
Масштабными называются условные знаки, которыми местные предметы изображаются в масштабе данного плана, т.е. крупные объекты, например, пашни, луга, леса, моря, озера и т.п.
Внемасштабные условные знаки – знаки, показывающие предметы, которые вследствие своей малости не могут быть изображены в масштабе плана (ширина дорог, колодцы, родники, мосты, опоры ЛЭП, столбы электросети и т.д.). Величина этих знаков не соответствует истинным размерам изображаемых предметов.
Скачать условные знаки для топографических планов:
Задачи, решаемые
по топографическим планам
По топографическому плану можно решить ряд задач, в том числе определить: прямоугольные координаты точки; длину линии; дирекционный угол и румб линии; отметку точки; уклон, крутизну ската и др. Порядок решения этих задач показан на примере учебного плана масштаба 1:2000.
Определение прямоугольных
координат точек
Пример : запись 79,2 означает, что абсцисса линии сетки Х = 79,2 км, т.е. отстоит по оси Х от начала координат на 79200 м. Запись 66,2 означает, что ордината линии сетки Y = 66,2 км, т.е. отстоит по оси У от начала координат на 66200 м.
Для быстрого нахождения какой-нибудь точки на топографическом плане указывают нижний левый угол соответствующего квадрата сетки координат.
Сначала записывают в метрах абсциссу Х (южной) линии квадрата, в котором находится точка А, т.е. Х(южной линии сетки) =79200,0 м. Циркулем и поперечным масштабом определяют расстояние Δх = Y(а)-Y(А) также в метрах с точностью масштаба. Полученную величину Δх=64,8 м прибавляют к абсциссе нижней (южной) линии квадрата Х(южной линии сетки) =79200,0 м и находят абсциссу точки А: Х(А) = 79200,0 + 64,8 = 79264,8 м.
Рис.4
Аналогично определяют ординату точки А: к значению ординаты западной линии сетки квадрата У(западной линии сетки) =66200,0 м прибавляют длину отрезка Δy =y(A)-y(b), равную 141,6 м, и получают Y(А) = 66200,0 + 141,6 = 66341,6 м.
Измерение длин линий
Расстояние между точками А и В измеряется циркулем, значение длины линии АВ находится по поперечному масштабу и записывается с точностью масштаба.
Определение
дирекционного угла
Дирекционным углом α называется горизонтальный угол, отсчитываемый от северного направления осевого меридиана, по ходу часовой стрелки, до направления данной линии.
Дирекционный угол α линии АВ можно измерить с помощью транспортира. На рис. 5 представлены дирекционные углы α1, α2, α3, и α4 четырех линий М-1, М-2, М-3, М-4.
Рис.5
Рис.6
Связь между прямым и обратным дирекционными углами выглядит так:
Рис.7
Например, если прямой румб равен r пр = СВ: 350º, то обратный румб равен r обр= ЮЗ: 350º.
Рис.8
Таблица перехода от дирекционных углов α к румбам r приведена ниже.
Формулы перехода от дирекционных углов к румбам
Определение отметок точек
и крутизны ската линии местности
Высотой Н точки местности называется расстояние по направлению отвесной линии от точки до уровенной поверхности.
Отметкой точки местности называется численное значение высоты точки. Например, Н(А) = 150 м, Н(В) =149 м.
На топографическом плане рельеф изображается надписями отметок отдельных характерных точек, условными знаками (промоина, обрыв и т. п.) и горизонта-лями.
Горизонталями называются замкнутые кривые линии, со-единяющие точки местности с одинаковыми отметками. Горизонтали образуются путём пересечения поверхности местности секущими горизонтальными плоскостями, проведенными через заданное расстояние, которое называется высотой сечения рельефа h.
Заложением называется расстояние d на плане между двумя соседними горизонталями (рис. 9 – 11).
Рис.9
По отметкам двух смежных (соседних) горизонталей можно определить отметку точки, лежащей между ними. Например: отметка первой точки В на нижней (рис. 10) горизонтали H1 = 161 м, отметка второй точки А на верхней (рис. 10) горизонтали H2 = 162 м (т.е. высота сечения рельефа h = 1 м), заложение d = 16,8 м, расстояние от первой горизонтали до точки С равно с = 7,6 м (рис. 10). Тогда (с требуемой точностью до 0,1 м) вычисляем отметку НС точки С по формуле
Рис.11
Чем больше угол наклона, тем скат круче.
Для нашего примера уклон линии местности между горизонталями равен